Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
03 February 2020 | Story Ruan Bruwer | Photo Varsity Cup
William Eybers read more
Centre William Eybers is the new captain of the Shimlas.

With an experienced squad at its disposal, the Shimla team is approaching the 2020 Varsity Cup with confidence – despite a very difficult first assignment.

The 13th version of the student rugby competition starts on Monday (3 February), with the University of the Free State team travelling to Stellenbosch to face the champions of the previous two years, Maties.

The Shimlas retained 19 players from last year’s team. This is compared to the previous two campaigns where they had little experience and a bunch of very young players. Head coach Hendro Scholtz can call upon ten players who have played in this competition before and who know what it is all about.
Even more important is that the ten senior men are playing in key positions, such as the hooker (Hanno Snyman), eighth man (Mihlali Peter and Bertie de Bod), scrumhalf (Rewan Kruger), and fullback (Ruan Henning). Snyman will participate in his fourth Varsity Cup.

The Shimlas have a new leader in centre William Eybers in 2020. He was named joint best backline player for 2019 at last year’s Shimla Rugby Club prize-giving ceremony.
The Shimlas won four of their eight matches in 2019 to book in spot in the semi-finals against Maties.

Monday’s encounter starts at 19:15 in the Danie Craven Stadium. The match will be broadcast live on SuperSport. The remaining Shimla fixtures are: 10 February against UWC (home), 17 February against NWU (away), 24 February against Tuks (away), 2 March against Ixias (home), 9 March against UJ (home), 16 March against Ikeys (away), 30 March against Wits (home).

News Archive

Death may come in adorable little packages
2015-03-23

The main host of the Lassa virus is the Natal Mulimammate mouse.

Photo: Supplied

Postdoctoral researcher, Abdon Atangana, of the Institute for Groundwater Studies at the university recently published an article online about the Lassa Haemorrhagic fever in the Natural Computing Applications Forum. In addition to the terminal transmissible sickness recognised as Ebola haemorrhagic fever, there is another strain called Lassa haemorrhagic fever.

The disease is classified under the arenaviridae virus family. The first outbreaks of the disease were observed in Nigeria, Liberia, Sierra Leone, and the Central African Republic. However, it was first described in 1969 in the town of Lassa, in Borno State, Nigeria.

The main host of the Lassa virus is the Natal Mulimammate mouse, an animal indigenous to most of Sub-Saharan Africa. The contamination in humans characteristically takes place through exposure to animal excrement through the respiratory or gastrointestinal tracts.

Mouthfuls of air containing tiny particle of infective material are understood to be the most noteworthy way of exposure. It is also possible to acquire the infection through broken skin or mucous membranes that are directly exposed to the infective material.

“The aim of my research was to propose a novel mathematical equation used to describe the spread of the illness amongst pregnant women in West Africa. To achieve this, I used my newly-proposed derivative with fractional order called beta-derivative. Since none of the commonly used integral transform could be used to derive the solution of the proposed model, I proposed a new integral transform called Atangana-Transform, and used it, together with some iterative technique, to derive the solution of the model.

“My numerical simulations show that the disease is as deadly amongst pregnant women as Ebola,” Abdon said.

Abdon’s research was submitted to one of Springer’s top-tier journals with an impact factor 1.78. The paper was accepted and published February 2015.

Read more about Abdon’s research.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept