Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
07 February 2020 | Story Xolisa Mnukwa | Photo Sonia Small
T-systems funding
Opening the doors of opportunity – TSSA allocated R2,4 million in bursary funding for 200 UFS students.


It is no secret that higher education institutions all over South Africa are plagued with the burden of current and historical student debt, leaving many hopeful students with the risk of financial exclusion. T-Systems South Africa (TSSA) has contributed a substantial amount of R2,4 million to fund a total of 200 students at the University of the Free State (UFS) in order to address ‘skills shortages’ in South Africa.

TSSA, a local unit of T-Systems International – a subsidiary of Deutsche Telekom – is invested in capitalising on South African expertise where innovation and intellectual property of a global (Information and Communications Technology) ICT provider is involved. The company strives to transform their clients and South Africa as a whole by providing innovative ICT solutions that work, in South Africa and for South Africa.

The company aims to endorse inclusive transformation in South Africa through the promotion and implementation of skills and enterprise development, as well as job creation. This forms part of the company’s National Development Plan for 2030 that envisions the elimination of poverty and reduced inequality.

Kovsie Alumni Trust Investment

Through its corporate social-responsibility wing called the Nation Building Initiative, T-Systems identified the University of the Free State after being contacted by the Kovsie Alumni Trust (KAT). 

KAT identified this opportunity as a call for the university to aid the advancement of students through initiatives such as the Integrated Transformation Plan (ITP), which was first launched in 2017. The ITP aims to utilise the university’s core functions (routed in teaching and learning, research, and engaged scholarship) to train and mould students into globally competitive graduates, which essentially also build towards skills and enterprise development, together with job creation. 

“The contribution of funding from T-Systems enabled us to empower our honours students by paying their outstanding university debt for 2019.  This has had a significant impact on the lives of many of our honours students who will be able to enrol for master’s programmes or seek employment without the burden of university debt,” says Professor Corli Witthuhn, UFS Vice-Rector: Research, Innovation and Internationalisation. 

“The University of the Free State is looking forward to partnering with T-Systems in 2020 in order to ensure continued opportunities for our students to further their education.”


Addressing a skills shortage in South Africa

Kovsie students completing honours studies in fields such as technology, human resources, and marketing as well as qualifications routed in accounting and finance, were given preference for the bursary. Other senior students required a pass mark of 60% or more to qualify for the bursary. TSSA paid off the university debt of students selected in 2019, and they had the opportunity to reapply in 2020. The UFS Alumni office facilitated the process. 

In 2020, students from all study years will be considered for the bursary, including matriculants who are entering university for the first time.  

Dineo Molefe , Managing Director at TSSA, says: “T-Systems has always invested in education by running a number of developmental initiatives, among others its ICT Academy – which provides free learnerships, internship programmes, including a learnership for disabled people as well as the flagship Hazyview Digital Learning Centre, which has become a unique rural nearshoring success story.

“All of this is earmarked to address the serious shortage of ICT skills – and by developing those skills, we not only address an industry problem but also contribute to employment opportunities in South Africa.”

News Archive

Carbon dioxide makes for more aromatic decaffeinated coffee
2017-10-27


 Description: Carbon dioxide makes for more aromatic decaffeinated coffee 1b Tags: Carbon dioxide makes for more aromatic decaffeinated coffee 1b 

The Inorganic Group in the Department of Chemistry
at the UFS is systematically researching the utilisation
of carbon dioxide. From the left, are, Dr Ebrahiem Botha,
Postdoctoral Fellow; Mahlomolo Khasemene, MSc student;
Prof André Roodt; Dr Marietjie Schutte-Smith, Senior Lecturer;
and Mokete Motente, MSc student.
Photo: Charl Devenish

Several industries in South Africa are currently producing hundreds of thousands of tons of carbon dioxide a year, which are released directly into the air. A typical family sedan doing around 10 000 km per year, is annually releasing more than one ton of carbon dioxide into the atmosphere.

The Inorganic Chemistry Research Group in the Department of Chemistry at the University of the Free State (UFS), in collaboration with the University of Zurich in Switzerland, has focused in recent years on using carbon dioxide – which is regarded as a harmful and global warming gas – in a meaningful way. 

According to Prof André Roodt, Head of Inorganic Chemistry at the UFS, the Department of Chemistry has for the past five decades been researching natural products that could be extracted from plants. These products are manufactured by plants through photosynthesis, in other words the utilisation of sunlight and carbon dioxide, nitrogen, and other nutrients from the soil.

Caffeine and chlorophyll 
“The Inorganic group is systematically researching the utilisation of carbon dioxide. Carbon dioxide is absorbed by plants through chlorophyll and used to make interesting and valuable compounds and sugars, which in turn could be used for the production of important new medicines,” says Prof Roodt.

Caffeine, a major energy enhancer, is also manufactured through photosynthesis in plants. It is commonly found in tea and coffee, but also (artificially added) in energy drinks. Because caffeine is a stimulant of the central nervous system and reduces fatigue and drowsiness, some people prefer decaffeinated coffee when enjoying this hot drink late at night. 

Removing caffeine from coffee could be expensive and time-consuming, but also environmentally unfriendly, because it involves the use of harmful and flammable liquids. Some of the Inorganic Group’s research focus areas include the use of carbon dioxide for the extraction of compounds, such as caffeine from plants. 

“Therefore, the research could lead to the availability of more decaffeinated coffee products. Although decaffeinated coffee is currently aromatic, we want to investigate further to ensure better quality flavours,” says Prof Roodt.

Another research aspect the team is focusing on is the use of carbon dioxide to extract chlorophyll from plants which have medicinal properties themselves. Chemical suppliers sell chlorophyll at R3 000 a gram. “In the process of investigating chlorophyll, our group discovered simpler techniques to comfortably extract larger quantities from green vegetables and other plants,” says Prof Roodt.

Medicines
In addition, the Inorganic Research Group is also looking to use carbon dioxide as a building block for more valuable compounds. Some of these compounds will be used in the Inorganic Group’s research focus on radiopharmaceutical products for the identification and possibly even the treatment of diseases such as certain cancers, tuberculosis, and malaria.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept