Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
07 February 2020 | Story Xolisa Mnukwa | Photo Sonia Small
T-systems funding
Opening the doors of opportunity – TSSA allocated R2,4 million in bursary funding for 200 UFS students.


It is no secret that higher education institutions all over South Africa are plagued with the burden of current and historical student debt, leaving many hopeful students with the risk of financial exclusion. T-Systems South Africa (TSSA) has contributed a substantial amount of R2,4 million to fund a total of 200 students at the University of the Free State (UFS) in order to address ‘skills shortages’ in South Africa.

TSSA, a local unit of T-Systems International – a subsidiary of Deutsche Telekom – is invested in capitalising on South African expertise where innovation and intellectual property of a global (Information and Communications Technology) ICT provider is involved. The company strives to transform their clients and South Africa as a whole by providing innovative ICT solutions that work, in South Africa and for South Africa.

The company aims to endorse inclusive transformation in South Africa through the promotion and implementation of skills and enterprise development, as well as job creation. This forms part of the company’s National Development Plan for 2030 that envisions the elimination of poverty and reduced inequality.

Kovsie Alumni Trust Investment

Through its corporate social-responsibility wing called the Nation Building Initiative, T-Systems identified the University of the Free State after being contacted by the Kovsie Alumni Trust (KAT). 

KAT identified this opportunity as a call for the university to aid the advancement of students through initiatives such as the Integrated Transformation Plan (ITP), which was first launched in 2017. The ITP aims to utilise the university’s core functions (routed in teaching and learning, research, and engaged scholarship) to train and mould students into globally competitive graduates, which essentially also build towards skills and enterprise development, together with job creation. 

“The contribution of funding from T-Systems enabled us to empower our honours students by paying their outstanding university debt for 2019.  This has had a significant impact on the lives of many of our honours students who will be able to enrol for master’s programmes or seek employment without the burden of university debt,” says Professor Corli Witthuhn, UFS Vice-Rector: Research, Innovation and Internationalisation. 

“The University of the Free State is looking forward to partnering with T-Systems in 2020 in order to ensure continued opportunities for our students to further their education.”


Addressing a skills shortage in South Africa

Kovsie students completing honours studies in fields such as technology, human resources, and marketing as well as qualifications routed in accounting and finance, were given preference for the bursary. Other senior students required a pass mark of 60% or more to qualify for the bursary. TSSA paid off the university debt of students selected in 2019, and they had the opportunity to reapply in 2020. The UFS Alumni office facilitated the process. 

In 2020, students from all study years will be considered for the bursary, including matriculants who are entering university for the first time.  

Dineo Molefe , Managing Director at TSSA, says: “T-Systems has always invested in education by running a number of developmental initiatives, among others its ICT Academy – which provides free learnerships, internship programmes, including a learnership for disabled people as well as the flagship Hazyview Digital Learning Centre, which has become a unique rural nearshoring success story.

“All of this is earmarked to address the serious shortage of ICT skills – and by developing those skills, we not only address an industry problem but also contribute to employment opportunities in South Africa.”

News Archive

Fight against Ebola virus requires more research
2014-10-22

 

Dr Abdon Atangana
Photo: Ifa Tshishonge
Dr Abdon Atangana, a postdoctoral researcher in the Institute for Groundwater Studies at the University of the Free State (UFS), wrote an article related to the Ebola virus: Modelling the Ebola haemorrhagic fever with the beta-derivative: Deathly infection disease in West African countries.

“The filoviruses belong to a virus family named filoviridae. This virus can cause unembellished haemorrhagic fever in humans and nonhuman monkeys. In literature, only two members of this virus family have been mentioned, namely the Marburg virus and the Ebola virus. However, so far only five species of the Ebola virus have been identified, including:  Ivory Coast, Sudan, Zaire, Reston and Bundibugyo.

“Among these families, the Ebola virus is the only member of the Zaire Ebola virus species and also the most dangerous, being responsible for the largest number of outbreaks.

“Ebola is an unusual, but fatal virus that causes bleeding inside and outside the body. As the virus spreads through the body, it damages the immune system and organs. Ultimately, it causes the blood-clotting levels in cells to drop. This leads to severe, uncontrollable bleeding.

Since all physical problems can be modelled via mathematical equation, Dr Atangana aimed in his research (the paper was published in BioMed Research International with impact factor 2.701) to analyse the spread of this deadly disease using mathematical equations. We shall propose a model underpinning the spread of this disease in a given Sub-Saharan African country,” he said.

The mathematical equations are used to predict the future behaviour of the disease, especially the spread of the disease among the targeted population. These mathematical equations are called differential equation and are only using the concept of rate of change over time.

However, there is several definitions for derivative, and the choice of the derivative used for such a model is very important, because the more accurate the model, the better results will be obtained.  The classical derivative describes the change of rate, but it is an approximation of the real velocity of the object under study. The beta derivative is the modification of the classical derivative that takes into account the time scale and also has a new parameter that can be considered as the fractional order.  

“I have used the beta derivative to model the spread of the fatal disease called Ebola, which has killed many people in the West African countries, including Nigeria, Sierra Leone, Guinea and Liberia, since December 2013,” he said.

The constructed mathematical equations were called Atangana’s Beta Ebola System of Equations (ABESE). “We did the investigation of the stable endemic points and presented the Eigen-Values using the Jacobian method. The homotopy decomposition method was used to solve the resulted system of equations. The convergence of the method was presented and some numerical simulations were done for different values of beta.

“The simulations showed that our model is more realistic for all betas less than 0.5.  The model revealed that, if there were no recovery precaution for a given population in a West African country, the entire population of that country would all die in a very short period of time, even if the total number of the infected population is very small.  In simple terms, the prediction revealed a fast spread of the virus among the targeted population. These results can be used to educate and inform people about the rapid spread of the deadly disease,” he said.

The spread of Ebola among people only occurs through direct contact with the blood or body fluids of a person after symptoms have developed. Body fluid that may contain the Ebola virus includes saliva, mucus, vomit, faeces, sweat, tears, breast milk, urine and semen. Entry points include the nose, mouth, eyes, open wounds, cuts and abrasions. Note should be taken that contact with objects contaminated by the virus, particularly needles and syringes, may also transmit the infection.

“Based on the predictions in this paper, we are calling on more research regarding this disease; in particular, we are calling on researchers to pay attention to finding an efficient cure or more effective prevention, to reduce the risk of contamination,” Dr Atangana said.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept