Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
07 February 2020 | Story Xolisa Mnukwa | Photo Sonia Small
T-systems funding
Opening the doors of opportunity – TSSA allocated R2,4 million in bursary funding for 200 UFS students.


It is no secret that higher education institutions all over South Africa are plagued with the burden of current and historical student debt, leaving many hopeful students with the risk of financial exclusion. T-Systems South Africa (TSSA) has contributed a substantial amount of R2,4 million to fund a total of 200 students at the University of the Free State (UFS) in order to address ‘skills shortages’ in South Africa.

TSSA, a local unit of T-Systems International – a subsidiary of Deutsche Telekom – is invested in capitalising on South African expertise where innovation and intellectual property of a global (Information and Communications Technology) ICT provider is involved. The company strives to transform their clients and South Africa as a whole by providing innovative ICT solutions that work, in South Africa and for South Africa.

The company aims to endorse inclusive transformation in South Africa through the promotion and implementation of skills and enterprise development, as well as job creation. This forms part of the company’s National Development Plan for 2030 that envisions the elimination of poverty and reduced inequality.

Kovsie Alumni Trust Investment

Through its corporate social-responsibility wing called the Nation Building Initiative, T-Systems identified the University of the Free State after being contacted by the Kovsie Alumni Trust (KAT). 

KAT identified this opportunity as a call for the university to aid the advancement of students through initiatives such as the Integrated Transformation Plan (ITP), which was first launched in 2017. The ITP aims to utilise the university’s core functions (routed in teaching and learning, research, and engaged scholarship) to train and mould students into globally competitive graduates, which essentially also build towards skills and enterprise development, together with job creation. 

“The contribution of funding from T-Systems enabled us to empower our honours students by paying their outstanding university debt for 2019.  This has had a significant impact on the lives of many of our honours students who will be able to enrol for master’s programmes or seek employment without the burden of university debt,” says Professor Corli Witthuhn, UFS Vice-Rector: Research, Innovation and Internationalisation. 

“The University of the Free State is looking forward to partnering with T-Systems in 2020 in order to ensure continued opportunities for our students to further their education.”


Addressing a skills shortage in South Africa

Kovsie students completing honours studies in fields such as technology, human resources, and marketing as well as qualifications routed in accounting and finance, were given preference for the bursary. Other senior students required a pass mark of 60% or more to qualify for the bursary. TSSA paid off the university debt of students selected in 2019, and they had the opportunity to reapply in 2020. The UFS Alumni office facilitated the process. 

In 2020, students from all study years will be considered for the bursary, including matriculants who are entering university for the first time.  

Dineo Molefe , Managing Director at TSSA, says: “T-Systems has always invested in education by running a number of developmental initiatives, among others its ICT Academy – which provides free learnerships, internship programmes, including a learnership for disabled people as well as the flagship Hazyview Digital Learning Centre, which has become a unique rural nearshoring success story.

“All of this is earmarked to address the serious shortage of ICT skills – and by developing those skills, we not only address an industry problem but also contribute to employment opportunities in South Africa.”

News Archive

Research eradicates bacteria from avocado facility
2017-01-17

 Description: Listeria monocytogenes Tags: Listeria monocytogenes

Listeria monocytogenes as seen under an electron
microscope. The photo was taken with a transmission
electron microscope at the microscopy unit of the UFS.
Bacteriophages (lollipop-like structures) can be seen
next to the bacterial cells.
Photo: Supplied

“The aim of my project was to identify and characterise the contamination problem in an avocado-processing facility and then to find a solution,” said Dr Amy Strydom, postdoctoral fellow in the Department of Microbial Biochemical and Food Biotechnology at the University of the Free State (UFS).

Her PhD, “Control of Listeria monocytogenes in an Avocado-processing Facility”, aimed to identify and characterise the contamination problem in a facility where avocados were processed into guacamole. Dr Strydom completed her MSc in food science in 2009 at Stellenbosch University and this was the catalyst for her starting her PhD in microbiology in 2012 at the UFS. The research was conducted over a period of four years and she graduated in 2016. The research project was funded by the National Research Foundation.

The opportunity to work closely with the food industry further motivated Dr Strydom to conduct her research. The research has made a significant contribution to a food producer (avocado facility) that will sell products that are not contaminated with any pathogens. The public will then buy food that is safe for human consumption.


What is Listeria monocytogenes?

Listeria monocytogenes is a food-borne pathogenic bacterium. When a food product is contaminated with L. monocytogenes, it will not be altered in ways that are obvious to the consumer, such as taste and smell. When ingested, however, it can cause a wide range of illnesses in people with impaired immune systems. “Risk groups include newborn babies, the elderly, and people suffering from diseases that weaken their immune systems,” Dr Strydom said. The processing adjustments based on her findings resulted in decreased numbers of Listeria in the facility.

The bacteria can also survive and grow at refrigeration temperatures, making them dangerous food pathogens, organisms which can cause illnesses [in humans]. Dr Strydom worked closely with the facility and developed an in-house monitoring system by means of which the facility could test their products and the processing environment. She also evaluated bacteriophages as a biological control agent in the processing facility. Bacteriophages are viruses that can only infect specific strains of bacteria. Despite bacteriophage products specifically intended for the use of controlling L. monocytogenes being commercially available in the food industry, Dr Strydom found that only 26% of the L. monocytogenes population in the facility was destroyed by the ListexP100TM product. “I concluded that the genetic diversity of the bacteria in the facility was too high and that the bacteriophages could not be used as a control measure. However, there is much we do not understand about bacteriophages, and with a few adjustments, we might be able to use them in the food industry.”

Microbiological and molecular characterisation of L. monocytogenes

The bacteria were isolated and purified using basic microbiological culturing. Characterisation was done based on specific genes present in the bacterial genome. “I amplified these genes with polymerase chain reaction (PCR), using various primers targeting these specific genes,” Dr Strydom said. Some amplification results were analysed with a subsequent restriction digestion where the genes were cut in specific areas with enzymes to create fragments. The lengths of these fragments can be used to differentiate between strains. “I also compared the whole genomes of some of the bacterial strains.” The bacteriophages were then isolated from waste water samples at the facility using the isolated bacterial strains. “However, I was not able to isolate a bacteriophage that could infect the bacteria in the facility.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept