Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
11 February 2020 | Story Valentino Ndaba | Photo Stephen Collett
UFS official opening
Kovsies is on track with the firm foundation laid in previous years. 2020 is a year where visibility and impact is the key theme.

WATCH: Official Opening 2020

Tackling 2020 with rigour and vigour is the top priority for the University of the Free State’s agenda and it’s all systems go after a year of building a solid foundation. Prof Francis Petersen, UFS Rector and Vice-Chancellor, addressed staff in his official Opening speech at the Bloemfontein Campus on Friday 7 February 2020.

“The university is on track with what it set out to deliver in 2019” Prof Petersen shared the successes of 2019 with the audience and outlined his vision and plans for 2020 with visibility and impact as the key themes. 

Prof Petersen urged staff to work hand-in-hand to ensure an outcome that generations will inherit with pride. “We have our eyes firmly set on the far horizon, to ensure that we bestow an institution on the next generation that is different from the past, a place where every essence is in perpetual renewal. That means every one of us is smaller than the institution, and every one of us needs to lay a brick that builds a university that is different from the past, more impressive than the past, an institution that will grow constantly.” 

Setting the pace

As a frame of reference, Prof Petersen pointed to engagement, conversation, clear communication and decisive action to yield the type of environment in which we all want to work and study. “I can assure you that we will continue with that engagement, in a sphere of respect, tolerance for different views by always focusing on what the Integrated Transformation Plan (ITP) stands for – which is fairness and social justice.”

Reflecting on the year that was.


Prof Petersen reflected on 2019 as a year which focused on a return on investment delivery as it relates to the Strategic Plan, ITP, seven Vice-Chancellor’s projects, institutional and multi-stakeholder group and institutional Risk Register. These guiding documents laid a firm foundation for implementation processes to take place this year.

Leading the way

The Rector related some success stories which include the increased number of NRF-rated researchers. “In the area of student success, we are probably leading the country and our inputs are globally known.”

As a national leader on the infrastructural and student accommodation front, the Department of Higher Education, Science and Technology often consults the UFS for advice on how other institutions can adequately spend their infrastructure grants. Moving forward, the university also plans to partner more with national and international institutions of higher learning with the aim of strengthening research and innovation ties.

On inclusiveness and social cohesion

Pressing issues such as gender-based violence and xenophobia are constantly being tackled by the Unit for Institutional Change and Social Justice in collaboration with other academic and support services. These parties have conducted and developed critical conversations, position papers, and policies to guide the institution towards an inclusive and socially cohesive space which embraces the values of ubuntu and respect.

In closing, Prof Petersen reminded the university community of the crucial role each individual plays in building a bright future. “We must always remember that the UFS exists through its staff and students and should never let one of them feel neglected or unheard.” 

News Archive

Nanotechnology breakthrough at UFS
2010-08-19

 Ph.D students, Chantel Swart and Ntsoaki Leeuw


Scientists at the University of the Free State (UFS) made an important breakthrough in the use of nanotechnology in medical and biological research. The UFS team’s research has been accepted for publication by the internationally accredited Canadian Journal of Microbiology.

The UFS study dissected yeast cells exposed to over-used cooking oil by peeling microscopically thin layers off the yeast cells through the use of nanotechnology.

The yeast cells were enlarged thousands of times to study what was going on inside the cells, whilst at the same time establishing the chemical elements the cells are composed of. This was done by making microscopically small surgical incisions into the cell walls.

This groundbreaking research opens up a host of new uses for nanotechnology, as it was the first study ever in which biological cells were surgically manipulated and at the same time elemental analysis performed through nanotechnology. According to Prof. Lodewyk Kock, head of the Division Lipid Biotechnology at the UFS, the study has far reaching implications for biological and medical research.

The research was the result of collaboration between the Department of Microbial, Biochemical and Food Biotechnology, the Department of Physics (under the leadership of Prof. Hendrik Swart) and the Centre for Microscopy (under the leadership of Prof.Pieter van Wyk).

Two Ph.D. students, Chantel Swart and Ntsoaki Leeuw, overseen by professors Kock and Van Wyk, managed to successfully prepare yeast that was exposed to over-used cooking oil (used for deep frying of food) for this first ever method of nanotechnological research.

According to Prof. Kock, a single yeast cell is approximately 5 micrometres long. “A micrometre is one millionth of a metre – in laymen’s terms, even less than the diameter of a single hair – and completely invisible to the human eye.”

Through the use of nanotechnology, the chemical composition of the surface of the yeast cells could be established by making a surgical incision into the surface. The cells could be peeled off in layers of approximately three (3) nanometres at a time to establish the effect of the oil on the yeast cell’s composition. A nanometre is one thousandth of a micrometre.

Each cell was enlarged by between 40 000 and 50 000 times. This was done by using the Department of Physics’ PHI700 Scanning Auger Nanoprobe linked to a Scanning Electron Microscope and Argon-etching. Under the guidance of Prof. Swart, Mss. Swart en Leeuw could dissect the surfaces of yeast cells exposed to over-used cooking oil. 

The study noted wart like outgrowths - some only a few nanometres in diameter – on the cell surfaces. Research concluded that these outgrowths were caused by the oil. The exposure to the oil also drastically hampered the growth of the yeast cells. (See figure 1)  

Researchers worldwide have warned about the over-usage of cooking oil for deep frying of food, as it can be linked to the cause of diseases like cancer. The over-usage of cooking oil in the preparation of food is therefore strictly regulated by laws worldwide.

The UFS-research doesn’t only show that over-used cooking oil is harmful to micro-organisms like yeast, but also suggests how nanotechnology can be used in biological and medical research on, amongst others, cancer cells.

 

Figure 1. Yeast cells exposed to over-used cooking oil. Wart like protuberances/ outgrowths (WP) is clearly visible on the surfaces of the elongated yeast cells. With the use of nanotechnology, it is possible to peel off the warts – some with a diameter of only a few nanometres – in layers only a few nanometres thick. At the same time, the 3D-structure of the warts as well as its chemical composition can be established.  

Media Release
Issued by: Mangaliso Radebe
Assistant Director: Media Liaison
Tel: 051 401 2828
Cell: 078 460 3320
E-mail: radebemt@ufs.ac.za  
18 August 2010
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept