Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
26 February 2020 | Story Leonie Bolleurs
Vegetable tunnels
Two vegetable tunnels were recently established on the UFS Bloemfontein Campus to contribute to the fight against food insecurity.

Food insecurity is a problem on university campuses worldwide. The three campuses of the University of the Free State (UFS) are not exempt from this plight. Research findings indicate that more than 64% of students at the university go through periods of hunger.

Annelize Visagie, , from the Division of Student Affairs who is heading the Food Environment Office at the UFS, confirms that food insecurity at higher education institutions is not a new phenomenon.

In a study with first-year students as focus, Visagie found that academic performance declines and coping mechanisms increase as the severity of food insecurity increases.

“Students use different coping mechanisms, with an alarming percentage of students (40,6%) using fasting as an excuse to friends for not having food, 60% of students skipping meals because they do not have enough money, and 43,2% of students being too embarrassed to ask for help.”

Visagie states that various factors contribute to this alarming scenario, with the main reason being that the majority of students come from impoverished economic and social circumstances. This suggests that although students receive NSFAS funding or any other bursary, it is not a guarantee that they are food secure.

Focus on student wellbeing
Aligning with the UFS strategic goal of improving student success and wellbeing, UFS staff is working hard to implement initiatives and obtain sponsorships and food donations to ensure that students do not go hungry.

Members of the university’s Food Environment Project, Drs Johan van Niekerk and JW Swanepoel from the Centre for Sustainable Agriculture, Rural Development and Extension (CENSARDE), and Karen Scheepers from the Division of Student Affairs who is heading KovsieAct partnered to move the existing vegetable tunnels on the UFS experimental farm to the Bloemfontein Campus.

The construction of the tunnels and boxes was financed by Tiger Brands. Professor Michael Rudolph and Dr Evans Muchesa who are involved with the Siyakhana Food Gardens, assisted with the training of students and consultation throughout the project.

The two tunnels (30 m x 10 m each) are covered with netting, and two water tanks with pumps are fitted to provide the necessary irrigation.

Vegetables add value
Dr Swanepoel explains: “In each tunnel there are 20 raised wooden boxes. Each residence received one box where they planted one type of vegetable crop, including Swiss chard, cabbage, carrots, beet, kale, and broccoli.”

Residence Committee members from all on- and off-campus student communities in civic and social-responsibility portfolios, as well as civic and social-responsibility student associations, received the necessary training to plant vegetables.

The vegetables were planted in mid-February and the first harvest is expected around mid-April.

This initiative, which will help students in the near future to keep the hunger pangs at bay in a healthy way, adds to the existing No Student Hungry programme. Visagie says it is important for the university to assist students in making healthy choices and to educate them on decisions to secure nutritional food for themselves.

In addition, the university also received food parcels from Rise Against Hunger, together with donations from organisations such as Gift of the Givers – providing 200 food parcels to students on the Qwaqwa Campus, and the recent donation from Tiger Brands – providing 500 food parcels to students.

News Archive

Nuclear Medicine on the forefront of cancer research
2017-07-10

Description: Nuclear Medicine on the forefront of cancer research Tags: Nuclear Medicine, cancer research, Dr Je’nine Horn-Lodewyk’s, tumour detection method, cancer, Department of Nuclear Medicine 

Dr Je’nine Horn-Lodewyk’s tumour detection method
could be the cost-effective breakthrough needed to decrease
the mortality rate in breast cancer patients.
Photo: Anja Aucamp

The field of Nuclear Medicine in South Africa and the rest of the world are expanding rapidly due to the development of hybrid cameras and new radiopharmaceuticals. These developments have a huge impact on the diagnosis and therapy of cancer.

The most advanced of these cameras, Positron emission tomography combined with normal CTs (PETCT), are not yet widely available in South Africa due to the cost of the cameras and the radiopharmaceuticals. A more cost-effective alternative can be of great benefit. To achieve this, the focus should be on developing new radiopharmaceuticals that can be used with the current cost-effective gamma cameras, according to University of the Free State researcher, Dr Je’nine Horn-Lodewyk from the Department of Nuclear Medicine.

Fluorodeoxyglucose (18F-FDG), a radiolabelled glucose analogue, is currently the radiopharmaceutical most commonly used in PET/CT imaging for mainly oncology indications. Although it is considered the gold standard for imaging in several malignancies, it does have certain disadvantages. An 18F-FDG PET/CT diagnostic imaging study can cost between R25 000 and R35 000 for a single patient in the private sector. The 18F-FDG is also more radioactive, which requires much stricter handling and shielding to avoid high radiation dosages to staff and patients.

Successful research potential innovative solution
In the search for the ideal radiopharmaceutical for tumour detection, the South African National Nuclear Energy Corporation (Necsa) developed a local synthesis process for ethylenedicysteine-deoxyglucose (EC-DG). EC-DG is also a glucose analogue similar to FDG. They succeeded in labelling the compound with Technetium-99-metastable-pertechnetate (99mTcO4-), the most common nuclear medicine isotope used for approximately 95% of nuclear medicine procedures, creating 99mTc-EC-DG.

In partnership with Dr Horn-Lodewyk, this compound was successfully used in various animal models and clinical scenarios, resulting in approval by the Medicine Control Council to use it in a human study. Research is also planned in order to investigate diagnostic accuracy in other cancers like lymphoma.  The end result of this research can produce a radiopharmaceutical that is cost effective, does not require the use of costly specialised equipment, has no significant side-effects, no special patient preparation, renders late imaging possible, and has decreased radiation risks.

Dr Horn-Lodewyk is grateful for the support of her mentor, Prof Anton Otto, as well as Dr Gert Engelbrecht, Head of the Department of Nuclear Medicine, Prof Jan Rijn Zeevaart from North-West University’s Preclinical Drug Development Platform and Necsa, and Judith Wagener from Necsa. This innovative research would also not have been possible without the financial assistance of Dr Glen Taylor and Eleanor van der Westhuizen in the Directorate of Research Development.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept