Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
26 February 2020 | Story Leonie Bolleurs
Vegetable tunnels
Two vegetable tunnels were recently established on the UFS Bloemfontein Campus to contribute to the fight against food insecurity.

Food insecurity is a problem on university campuses worldwide. The three campuses of the University of the Free State (UFS) are not exempt from this plight. Research findings indicate that more than 64% of students at the university go through periods of hunger.

Annelize Visagie, , from the Division of Student Affairs who is heading the Food Environment Office at the UFS, confirms that food insecurity at higher education institutions is not a new phenomenon.

In a study with first-year students as focus, Visagie found that academic performance declines and coping mechanisms increase as the severity of food insecurity increases.

“Students use different coping mechanisms, with an alarming percentage of students (40,6%) using fasting as an excuse to friends for not having food, 60% of students skipping meals because they do not have enough money, and 43,2% of students being too embarrassed to ask for help.”

Visagie states that various factors contribute to this alarming scenario, with the main reason being that the majority of students come from impoverished economic and social circumstances. This suggests that although students receive NSFAS funding or any other bursary, it is not a guarantee that they are food secure.

Focus on student wellbeing
Aligning with the UFS strategic goal of improving student success and wellbeing, UFS staff is working hard to implement initiatives and obtain sponsorships and food donations to ensure that students do not go hungry.

Members of the university’s Food Environment Project, Drs Johan van Niekerk and JW Swanepoel from the Centre for Sustainable Agriculture, Rural Development and Extension (CENSARDE), and Karen Scheepers from the Division of Student Affairs who is heading KovsieAct partnered to move the existing vegetable tunnels on the UFS experimental farm to the Bloemfontein Campus.

The construction of the tunnels and boxes was financed by Tiger Brands. Professor Michael Rudolph and Dr Evans Muchesa who are involved with the Siyakhana Food Gardens, assisted with the training of students and consultation throughout the project.

The two tunnels (30 m x 10 m each) are covered with netting, and two water tanks with pumps are fitted to provide the necessary irrigation.

Vegetables add value
Dr Swanepoel explains: “In each tunnel there are 20 raised wooden boxes. Each residence received one box where they planted one type of vegetable crop, including Swiss chard, cabbage, carrots, beet, kale, and broccoli.”

Residence Committee members from all on- and off-campus student communities in civic and social-responsibility portfolios, as well as civic and social-responsibility student associations, received the necessary training to plant vegetables.

The vegetables were planted in mid-February and the first harvest is expected around mid-April.

This initiative, which will help students in the near future to keep the hunger pangs at bay in a healthy way, adds to the existing No Student Hungry programme. Visagie says it is important for the university to assist students in making healthy choices and to educate them on decisions to secure nutritional food for themselves.

In addition, the university also received food parcels from Rise Against Hunger, together with donations from organisations such as Gift of the Givers – providing 200 food parcels to students on the Qwaqwa Campus, and the recent donation from Tiger Brands – providing 500 food parcels to students.

News Archive

Is milk really so well-known, asks UFS’s Prof. Osthoff
2011-03-17

Prof. Garry Osthoff
Photo: Stephen Collett

Prof. Garry Osthoff opened a whole new world of milk to the audience in his inaugural lecture, Milk: the well-known (?) food, in our Department of Microbial, Biochemical and Food Biotechnology of the Faculty of Natural and Agricultural Sciences.

Prof. Osthoff has done his research in protein chemistry, immuno-chemistry and enzymology at the Council for Scientific and Industrial Research (CSIR) in Pretoria and post-doctoral research at the Bowman-Grey School of Medicine, North Carolina, USA. That was instrumental in establishing food chemistry at the university.
 
He is involved in chemical aspects of food, with a focus on dairy science and technology. He is also involved in the research of cheese processing as well as milk evolution and concentrated on milk evolution in his lecture. Knowledge of milk from dairy animals alone does not provide all the explanations of milk as food.
 
Some aspects he highlighted in his lecture were that milk is the first food to be utilised by young mammals and that it is custom-designed for each species. “However, mankind is an opportunist and has found ways of easy access to food by the practice of agriculture, where plants as well as animals were employed or rather exploited,” he said.
 
The cow is the best-known milk producer, but environmental conditions forced man to select other animals. In spite of breeding selection, cattle seem not to have adapted to the most extreme conditions such as high altitudes with sub-freezing temperatures, deserts and marshes.
 
Prof. Osthoff said the consumption of the milk as an adult is not natural; neither is the consumption of milk across species. This practice of mankind may often have consequences, when signs of malnutrition or diseases are noticed. Two common problems are an allergy to milk and lactose intolerance.
 
Allergies are normally the result of an immune response of the consumer to the foreign proteins found in the milk. In some cases it might help to switch from one milk source to another, such as switching from cow’s milk to goat’s milk.
 
Prof. Osthoff said lactose intolerance – the inability of adult humans to digest lactose, the milk sugar – is natural, as adults lose that ability to digest lactose. The symptoms of the condition are stomach cramps and diarrhoea. This problem is mainly found in the warmer climates of the world. This could be an indication of early passive development of dairy technology. In these regions milk could not be stored in its fresh form, but in a fermented form, in which case the lactose was pre-digested by micro-organisms, and the human population never adapted to digesting lactose in adulthood.
 
According to Prof. Osthoff, it is basically the lactose in milk that has spurred dairy technology. Its fermentation has resulted in the development of yoghurts and all the cheeses that we know. In turn, the intolerance to lactose has spurred a further technological solution: lactose-free milk is currently produced by pre-digestion of lactose with enzymes.
 
It was realised that the milks and products from different species differed in quality aspects such as keeping properties and taste. It was also realised that the nutritional properties differed as well as their effects on health. One example is the mentioned allergy against cow’s milk proteins, which may be solved by the consumption of goat’s milk. The nutritional benefits and technological processing of milk aroused an interest in more information, and it was realised that the information gained from human milk and that of the few domesticated species do not provide a complete explanation of the properties of milk as food. Of the 250 species of milk which have been studied, only the milk of humans and a few domesticated dairy animals has been studied in detail.

Media Release
15 March 2011
Issued by: Lacea Loader
Director: Strategic Communication
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: news@ufs.ac.za

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept