Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
26 February 2020 | Story Leonie Bolleurs
Vegetable tunnels
Two vegetable tunnels were recently established on the UFS Bloemfontein Campus to contribute to the fight against food insecurity.

Food insecurity is a problem on university campuses worldwide. The three campuses of the University of the Free State (UFS) are not exempt from this plight. Research findings indicate that more than 64% of students at the university go through periods of hunger.

Annelize Visagie, , from the Division of Student Affairs who is heading the Food Environment Office at the UFS, confirms that food insecurity at higher education institutions is not a new phenomenon.

In a study with first-year students as focus, Visagie found that academic performance declines and coping mechanisms increase as the severity of food insecurity increases.

“Students use different coping mechanisms, with an alarming percentage of students (40,6%) using fasting as an excuse to friends for not having food, 60% of students skipping meals because they do not have enough money, and 43,2% of students being too embarrassed to ask for help.”

Visagie states that various factors contribute to this alarming scenario, with the main reason being that the majority of students come from impoverished economic and social circumstances. This suggests that although students receive NSFAS funding or any other bursary, it is not a guarantee that they are food secure.

Focus on student wellbeing
Aligning with the UFS strategic goal of improving student success and wellbeing, UFS staff is working hard to implement initiatives and obtain sponsorships and food donations to ensure that students do not go hungry.

Members of the university’s Food Environment Project, Drs Johan van Niekerk and JW Swanepoel from the Centre for Sustainable Agriculture, Rural Development and Extension (CENSARDE), and Karen Scheepers from the Division of Student Affairs who is heading KovsieAct partnered to move the existing vegetable tunnels on the UFS experimental farm to the Bloemfontein Campus.

The construction of the tunnels and boxes was financed by Tiger Brands. Professor Michael Rudolph and Dr Evans Muchesa who are involved with the Siyakhana Food Gardens, assisted with the training of students and consultation throughout the project.

The two tunnels (30 m x 10 m each) are covered with netting, and two water tanks with pumps are fitted to provide the necessary irrigation.

Vegetables add value
Dr Swanepoel explains: “In each tunnel there are 20 raised wooden boxes. Each residence received one box where they planted one type of vegetable crop, including Swiss chard, cabbage, carrots, beet, kale, and broccoli.”

Residence Committee members from all on- and off-campus student communities in civic and social-responsibility portfolios, as well as civic and social-responsibility student associations, received the necessary training to plant vegetables.

The vegetables were planted in mid-February and the first harvest is expected around mid-April.

This initiative, which will help students in the near future to keep the hunger pangs at bay in a healthy way, adds to the existing No Student Hungry programme. Visagie says it is important for the university to assist students in making healthy choices and to educate them on decisions to secure nutritional food for themselves.

In addition, the university also received food parcels from Rise Against Hunger, together with donations from organisations such as Gift of the Givers – providing 200 food parcels to students on the Qwaqwa Campus, and the recent donation from Tiger Brands – providing 500 food parcels to students.

News Archive

New world-class Chemistry facilities at UFS
2011-11-22

 

A world-class research centre was introduced on Friday 18 November 2011 when the new Chemistry building on the Bloemfontein Campus of the University of the Free State (UFS) was officially opened.
The upgrading of the building, which has taken place over a period of five years, is the UFS’s largest single financial investment in a long time. The building itself has been renovated at a cost of R60 million and, together with the new equipment acquired, the total investment exceeds R110 million. The university has provided the major part of this, with valuable contributions from Sasol and the South African Research Foundation (NRF), which each contributed more than R20 million for different facets and projects.
The senior management of Sasol, NECSA (The South African Nuclear Energy Corporation), PETLabs Pharmaceuticals, and visitors from Sweden attended the opening.

Prof. Andreas Roodt, Head of the Department of Chemistry, states the department’s specialist research areas includes X-ray crystallography, electrochemistry, synthesis of new molecules, the development of new methods to determine rare elements, water purification, as well as the measurement of energy and temperatures responsible for phase changes in molecules, the development of agents to detect cancer and other defects in the body, and many more.

“We have top expertise in various fields, with some of the best equipment and currently competing with the best laboratories in the world. We have collaborative agreements with more than twenty national and international chemistry research groups of note.

“Currently we are providing inputs about technical aspects of the acid mine water in Johannesburg and vicinity, as well as the fracking in the Karoo in order to release shale gas.”

New equipment installed during the upgrading action comprises:

  • X-ray diffractometers (R5 million) for crystal research. Crystals with unknown compounds are researched on an X-ray diffractometer, which determines the distances in angstroms (1 angstrom is a ten-billionth of a metre) and corners between atoms, as well as the arrangement of the atoms in the crystal, and the precise composition of the molecules in the crystal.
  • Differential scanning calorimeter (DSC) for thermographic analyses (R4 million). Heat transfer and the accompanying changes, as in volcanoes, and catalytic reactions for new motor petrol are researched. Temperature changes, coupled with the phase switchover of fluid crystals (liquid crystals -watches, TV screens) of solid matter to fluids, are measured.
  • Nuclear-magnetic resonance (NMR: Bruker 600 MHz; R12 million, one of the most advanced systems in Africa). A NMR apparatus is closely linked with the apparatus for magnetic resonance imaging, which is commonly used in hospitals. NMR is also used to determine the structure of unknown compounds, as well as the purity of the sample. Important structural characteristics of molecules can also be identified, which is extremely important if this molecule is to be used as medication, as well as to predict any possible side effects of it.
  • High-performance Computing Centre (HPC, R5 million). The UFS’ HPC consists of approximately 900 computer cores (equal to 900 ordinary personal computers) encapsulated in one compact system handling calculations at a billion-datapoint level It is used to calculate the geometry and spatial arrangements, energy and characteristics of molecules. The bigger the molecule that is worked with, the more powerful the computers must be doing the calculations. Computing chemistry is particularly useful to calculate molecular characteristics in the absence of X-ray crystallographic or other structural information. Some reactions are so quick that the intermediary products cannot be characterised and computing chemistry is of invaluable value in that case.
  • Catalytic and high-pressure equipment (R6 million; some of the most advanced equipment in the world). The pressures reached (in comparison with those in car tyres) are in gases (100 times bigger) and in fluids (1 500 times) in order to study very special reactions. The research is undertaken, some of which are in collaboration with Sasol, to develop new petrol and petrol additives and add value to local chemicals.
  • Reaction speed equipment (Kinetics: R5 million; some of the most advanced equipment in the world). The tempo and reactions can be studied in the ultraviolet, visible and infrared area at millisecond level; if combined with the NMR, up to a microsecond level (one millionth of a second.

Typical reactions are, for example, the human respiratory system, the absorption of agents in the brain, decomposition of nanomaterials and protein, acid and basis polymerisation reactions (shaping of water-bottle plastic) and many more.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept