Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
26 February 2020 | Story Leonie Bolleurs
Vegetable tunnels
Two vegetable tunnels were recently established on the UFS Bloemfontein Campus to contribute to the fight against food insecurity.

Food insecurity is a problem on university campuses worldwide. The three campuses of the University of the Free State (UFS) are not exempt from this plight. Research findings indicate that more than 64% of students at the university go through periods of hunger.

Annelize Visagie, , from the Division of Student Affairs who is heading the Food Environment Office at the UFS, confirms that food insecurity at higher education institutions is not a new phenomenon.

In a study with first-year students as focus, Visagie found that academic performance declines and coping mechanisms increase as the severity of food insecurity increases.

“Students use different coping mechanisms, with an alarming percentage of students (40,6%) using fasting as an excuse to friends for not having food, 60% of students skipping meals because they do not have enough money, and 43,2% of students being too embarrassed to ask for help.”

Visagie states that various factors contribute to this alarming scenario, with the main reason being that the majority of students come from impoverished economic and social circumstances. This suggests that although students receive NSFAS funding or any other bursary, it is not a guarantee that they are food secure.

Focus on student wellbeing
Aligning with the UFS strategic goal of improving student success and wellbeing, UFS staff is working hard to implement initiatives and obtain sponsorships and food donations to ensure that students do not go hungry.

Members of the university’s Food Environment Project, Drs Johan van Niekerk and JW Swanepoel from the Centre for Sustainable Agriculture, Rural Development and Extension (CENSARDE), and Karen Scheepers from the Division of Student Affairs who is heading KovsieAct partnered to move the existing vegetable tunnels on the UFS experimental farm to the Bloemfontein Campus.

The construction of the tunnels and boxes was financed by Tiger Brands. Professor Michael Rudolph and Dr Evans Muchesa who are involved with the Siyakhana Food Gardens, assisted with the training of students and consultation throughout the project.

The two tunnels (30 m x 10 m each) are covered with netting, and two water tanks with pumps are fitted to provide the necessary irrigation.

Vegetables add value
Dr Swanepoel explains: “In each tunnel there are 20 raised wooden boxes. Each residence received one box where they planted one type of vegetable crop, including Swiss chard, cabbage, carrots, beet, kale, and broccoli.”

Residence Committee members from all on- and off-campus student communities in civic and social-responsibility portfolios, as well as civic and social-responsibility student associations, received the necessary training to plant vegetables.

The vegetables were planted in mid-February and the first harvest is expected around mid-April.

This initiative, which will help students in the near future to keep the hunger pangs at bay in a healthy way, adds to the existing No Student Hungry programme. Visagie says it is important for the university to assist students in making healthy choices and to educate them on decisions to secure nutritional food for themselves.

In addition, the university also received food parcels from Rise Against Hunger, together with donations from organisations such as Gift of the Givers – providing 200 food parcels to students on the Qwaqwa Campus, and the recent donation from Tiger Brands – providing 500 food parcels to students.

News Archive

Fight against Ebola virus requires more research
2014-10-22

 

Dr Abdon Atangana
Photo: Ifa Tshishonge
Dr Abdon Atangana, a postdoctoral researcher in the Institute for Groundwater Studies at the University of the Free State (UFS), wrote an article related to the Ebola virus: Modelling the Ebola haemorrhagic fever with the beta-derivative: Deathly infection disease in West African countries.

“The filoviruses belong to a virus family named filoviridae. This virus can cause unembellished haemorrhagic fever in humans and nonhuman monkeys. In literature, only two members of this virus family have been mentioned, namely the Marburg virus and the Ebola virus. However, so far only five species of the Ebola virus have been identified, including:  Ivory Coast, Sudan, Zaire, Reston and Bundibugyo.

“Among these families, the Ebola virus is the only member of the Zaire Ebola virus species and also the most dangerous, being responsible for the largest number of outbreaks.

“Ebola is an unusual, but fatal virus that causes bleeding inside and outside the body. As the virus spreads through the body, it damages the immune system and organs. Ultimately, it causes the blood-clotting levels in cells to drop. This leads to severe, uncontrollable bleeding.

Since all physical problems can be modelled via mathematical equation, Dr Atangana aimed in his research (the paper was published in BioMed Research International with impact factor 2.701) to analyse the spread of this deadly disease using mathematical equations. We shall propose a model underpinning the spread of this disease in a given Sub-Saharan African country,” he said.

The mathematical equations are used to predict the future behaviour of the disease, especially the spread of the disease among the targeted population. These mathematical equations are called differential equation and are only using the concept of rate of change over time.

However, there is several definitions for derivative, and the choice of the derivative used for such a model is very important, because the more accurate the model, the better results will be obtained.  The classical derivative describes the change of rate, but it is an approximation of the real velocity of the object under study. The beta derivative is the modification of the classical derivative that takes into account the time scale and also has a new parameter that can be considered as the fractional order.  

“I have used the beta derivative to model the spread of the fatal disease called Ebola, which has killed many people in the West African countries, including Nigeria, Sierra Leone, Guinea and Liberia, since December 2013,” he said.

The constructed mathematical equations were called Atangana’s Beta Ebola System of Equations (ABESE). “We did the investigation of the stable endemic points and presented the Eigen-Values using the Jacobian method. The homotopy decomposition method was used to solve the resulted system of equations. The convergence of the method was presented and some numerical simulations were done for different values of beta.

“The simulations showed that our model is more realistic for all betas less than 0.5.  The model revealed that, if there were no recovery precaution for a given population in a West African country, the entire population of that country would all die in a very short period of time, even if the total number of the infected population is very small.  In simple terms, the prediction revealed a fast spread of the virus among the targeted population. These results can be used to educate and inform people about the rapid spread of the deadly disease,” he said.

The spread of Ebola among people only occurs through direct contact with the blood or body fluids of a person after symptoms have developed. Body fluid that may contain the Ebola virus includes saliva, mucus, vomit, faeces, sweat, tears, breast milk, urine and semen. Entry points include the nose, mouth, eyes, open wounds, cuts and abrasions. Note should be taken that contact with objects contaminated by the virus, particularly needles and syringes, may also transmit the infection.

“Based on the predictions in this paper, we are calling on more research regarding this disease; in particular, we are calling on researchers to pay attention to finding an efficient cure or more effective prevention, to reduce the risk of contamination,” Dr Atangana said.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept