Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
22 January 2020 | Story Leonie Bolleurs | Photo Leonie Bolleurs
Soil Confrence at UFS
At the Combined Congress with the theme ‘Basic and applied sciences – Fundamentals of sustainable agriculture’, were from the left: Prof Klaus Kellner, Prof Prakash Naidoo, Dr Cobus Botha from the Agriculture Research Council, Prof Vaughan Hattingh, and Mr Matome Ramokgopa.

“We are at the beginning of a new decade that will in all likelihood be pivotal for aspects such as food security, climate change, and the sustainable use of natural resources – aspects that the societies you represent are of course keenly involved with – and in terms of which you can play an increasingly valuable role.” 

These were the words of Vice-Rector: Operations at the University of the Free State (UFS), Prof Prakash Naidoo, on opening a Combined Congress of the Soil Science Society of South Africa (SSSSA), the South African Society of Crop Production (SASCP), the Southern African Weed Science Society (SAWSS), and the Southern African Society for Horticultural Sciences (SASHS).

The UFS Department of Soil, Crop and Climate Sciences is hosting the congress, with scientific content of four disciplines (soil, crop, weed, and horticulture) presented by both local and international guest speakers.

The theme of this year’s congress taking place on the UFS Bloemfontein Campus, is Basic and applied sciences – Fundamentals of sustainable agriculture.

Prof Naidoo continues: “It has been predicted that the world will need almost double the current food supply by 2050 to feed an ever-increasing world population. This clearly makes the scientific work done in the agricultural sector and the organisations affiliated with it, more vital than ever. We need to do what we can to ensure food security and sustainability.”

“A congress like yours is an opportunity to tap into the perspectives and research results of collaborators from different fields, and from different levels of skill and experience – with the aim of ultimately benefiting wider communities.”

Leader in agriculture sector

Prof Vaughan Hattingh, representing SASHS (Chief Executive Officer of Citrus Research International); Mr Matome Ramokgopa, representing SASCP (General Manager of Enza Zanden SA); and Prof Klaus Kellner, representing SSSSA (Department of Botany at the North-West University), delivered the combined opening address.

Prof Hattingh, speaking on ‘Industry–University partnership opportunity road ahead for horticultural research’, says citrus is a major horticultural product internationally and the biggest horticultural export from South Africa. The citrus industry, the second largest exporter of citrus in the world, generates R20 bn per year and is the biggest funder of research in this area. 

Prof Hattingh states that university partnerships, developing science to assist the industry, are key. “The future of horticultural industries and horticultural research at universities depends on successful university-industry partnerships.”

Mr Ramokgopa talked about ‘Innovative solutions for vegetable seed production for a growing population’, saying that Enza Zanden employed several techniques in vegetable production in response to the needs of retailers and consumers. These include smaller tomatoes (for snacking purposes), smaller leaf size of lettuce (thus a smaller area for decay), plastic-free packaging of cucumber with a longer shelf life, and more uniform onions (suitable for onion rings). 

Prof Kellner focused on ‘Scientifically sound policies and practices to ensure food security and sustainable agriculture’. He said: “It is getting warmer in Southern Africa and Europe. We need to realise it and adapt practices accordingly.”

More discussions on sustainable agriculture

Other interesting topics covered at the congress include, ‘Developing propagation technologies for indigenous plants used in the natural products industry’; ‘The influence of foliar and application rate of nitrogen fertiliser on seed and oil yield of canola’; ‘Sweet potato production in sacks: potential utilisation of limited space in rural, urban and peri-urban areas’; ‘The efficacy of postharvest wax application in the reduction of chilling injury incidence in lemon fruit’; and ‘Herbicide use within the commercial forestry sector in South Africa’.

Congress attendees can also look forward to the ‘Soil fertility and crop nutrition symposium: principles and practices’ on Wednesday 22 January 2020.

The congress kicked off on 21 January, and will come to an end on Thursday 23 January 2020. For more information on the sessions, see programme.

News Archive

Researcher part of project aimed at producing third-generation biofuels from microalgae in Germany
2016-05-09

Description: Novagreen bioreactor  Tags: Novagreen bioreactor

Some of the researchers and technicians among the tubes of the Novagreen bioreactor (Prof Grobbelaar on left)

A researcher from the University of the Free State (UFS), Prof Johan Grobbelaar, was invited to join a group of scientists recently at the Institute for Bio- and Geo-Sciences of the Research Centre Jülich, in Germany, where microalgae are used for lipid (oil) production, and then converted to kerosene for the aviation industry.

The project is probably the first of its kind to address bio-fuel production from microalgae on such a large scale.  

“The potential of algae as a fuel source is undisputed, because it was these photoautotrophic micro-organisms that were fixing sunlight energy into lipids for millions of years, generating the petroleum reserves that modern human civilisation uses today.  However, these reserves are finite, so the challenge is marrying biology with technology to produce economically-competitive fuels without harming the environment and compromising our food security.  The fundamental ability that microalgae have to produce energy-rich biomass from CO2, nutrients, and sunlight through photosynthesis for biofuels, is commonly referred to as the Third-Generation Biofuels (3G),” said Prof Grobbelaar.

The key compounds used for bio-diesel and kerosene production are the lipids and, more particularly, the triacylglyserols commonly referred to as TAGs.  These lipids, once extracted, need to be trans-esterified for biodiesel, while a further “cracking” step is required to produce kerosene.  Microalgae can store energy as lipids and/or carbohydrates. However, for biofuels, microalgae with high TAG contents are required.  A number of such algae have been isolated, and lipid contents of up to 60% have been achieved.

According to Prof Grobbelaar, the challenge is large-scale, high-volume production, since it is easy to manipulate growth conditions in the laboratory for experimental purposes.  

The AUFWIND project (AUFWIND, a German term for up-current, or new impetus) in Germany consists of three different commercially-available photobioreactor types, which are being compared for lipid production.

Description: Lipid rich chlorella Tags: Lipid rich chlorella

Manipulated Chlorella with high lipid contents (yellow) in the Novagreen bioreactor

The photobioreactors each occupies 500 m2 of land surface area, are situated next to one another, and can be monitored continuously.  The three systems are from Novagreen, IGV, and Phytolutions.  The Novagreen photobioreactor is housed in a glass house, and consist of interconnected vertical plastic tubes roughly 150 mm in diameter. The Phytolutions system is outdoors, and consists of curtains of vertical plastic tubes with a diameter of about 90 mm.  The most ambitious photobioreactor is from IGV, and consists of horizontally-layered nets housed in a plastic growth hall, where the algae are sprayed over the nets, and allowed to grow while dripping from one net to the next.

Prof Grobbelaar’s main task was to manipulate growth conditions in such a way that the microalgae converted their stored energy into lipids, and to establish protocols to run the various photobioreactors. This was accomplished in just over two months of intensive experimentation, and included modifications to the designs of the photobioreactors, the microalgal strain selection, and the replacement of the nutrient broth with a so-called balanced one.

Prof Grobbelaar has no illusions regarding the economic feasibility of the project.  However, with continued research, optimisation, and utilisation of waste resources, it is highly likely that the first long-haul flights using microalgal-derived kerosene will be possible in the not-too-distant future.

Prof Grobbelaar from the Department of Plant Sciences, although partly retired, still serves on the editorial boards of several journals. He is also involved with the examining of PhDs, many of them from abroad.  In addition, he assisted the Technology Innovation Agency of South Africa in the formulation of an algae-biotechnology and training centre.  “The chances are good that such a centre will be established in Upington, in the Northern Cape,” Prof Grobbelaar said.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept