Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
22 January 2020 | Story Leonie Bolleurs | Photo Leonie Bolleurs
Soil Confrence at UFS
At the Combined Congress with the theme ‘Basic and applied sciences – Fundamentals of sustainable agriculture’, were from the left: Prof Klaus Kellner, Prof Prakash Naidoo, Dr Cobus Botha from the Agriculture Research Council, Prof Vaughan Hattingh, and Mr Matome Ramokgopa.

“We are at the beginning of a new decade that will in all likelihood be pivotal for aspects such as food security, climate change, and the sustainable use of natural resources – aspects that the societies you represent are of course keenly involved with – and in terms of which you can play an increasingly valuable role.” 

These were the words of Vice-Rector: Operations at the University of the Free State (UFS), Prof Prakash Naidoo, on opening a Combined Congress of the Soil Science Society of South Africa (SSSSA), the South African Society of Crop Production (SASCP), the Southern African Weed Science Society (SAWSS), and the Southern African Society for Horticultural Sciences (SASHS).

The UFS Department of Soil, Crop and Climate Sciences is hosting the congress, with scientific content of four disciplines (soil, crop, weed, and horticulture) presented by both local and international guest speakers.

The theme of this year’s congress taking place on the UFS Bloemfontein Campus, is Basic and applied sciences – Fundamentals of sustainable agriculture.

Prof Naidoo continues: “It has been predicted that the world will need almost double the current food supply by 2050 to feed an ever-increasing world population. This clearly makes the scientific work done in the agricultural sector and the organisations affiliated with it, more vital than ever. We need to do what we can to ensure food security and sustainability.”

“A congress like yours is an opportunity to tap into the perspectives and research results of collaborators from different fields, and from different levels of skill and experience – with the aim of ultimately benefiting wider communities.”

Leader in agriculture sector

Prof Vaughan Hattingh, representing SASHS (Chief Executive Officer of Citrus Research International); Mr Matome Ramokgopa, representing SASCP (General Manager of Enza Zanden SA); and Prof Klaus Kellner, representing SSSSA (Department of Botany at the North-West University), delivered the combined opening address.

Prof Hattingh, speaking on ‘Industry–University partnership opportunity road ahead for horticultural research’, says citrus is a major horticultural product internationally and the biggest horticultural export from South Africa. The citrus industry, the second largest exporter of citrus in the world, generates R20 bn per year and is the biggest funder of research in this area. 

Prof Hattingh states that university partnerships, developing science to assist the industry, are key. “The future of horticultural industries and horticultural research at universities depends on successful university-industry partnerships.”

Mr Ramokgopa talked about ‘Innovative solutions for vegetable seed production for a growing population’, saying that Enza Zanden employed several techniques in vegetable production in response to the needs of retailers and consumers. These include smaller tomatoes (for snacking purposes), smaller leaf size of lettuce (thus a smaller area for decay), plastic-free packaging of cucumber with a longer shelf life, and more uniform onions (suitable for onion rings). 

Prof Kellner focused on ‘Scientifically sound policies and practices to ensure food security and sustainable agriculture’. He said: “It is getting warmer in Southern Africa and Europe. We need to realise it and adapt practices accordingly.”

More discussions on sustainable agriculture

Other interesting topics covered at the congress include, ‘Developing propagation technologies for indigenous plants used in the natural products industry’; ‘The influence of foliar and application rate of nitrogen fertiliser on seed and oil yield of canola’; ‘Sweet potato production in sacks: potential utilisation of limited space in rural, urban and peri-urban areas’; ‘The efficacy of postharvest wax application in the reduction of chilling injury incidence in lemon fruit’; and ‘Herbicide use within the commercial forestry sector in South Africa’.

Congress attendees can also look forward to the ‘Soil fertility and crop nutrition symposium: principles and practices’ on Wednesday 22 January 2020.

The congress kicked off on 21 January, and will come to an end on Thursday 23 January 2020. For more information on the sessions, see programme.

News Archive

Mathematical methods used to detect and classify breast cancer masses
2016-08-10

Description: Breast lesions Tags: Breast lesions

Examples of Acho’s breast mass
segmentation identification

Breast cancer is the leading cause of female mortality in developing countries. According to the World Health Organization (WHO), the low survival rates in developing countries are mainly due to the lack of early detection and adequate diagnosis programs.

Seeing the picture more clearly

Susan Acho from the University of the Free State’s Department of Medical Physics, breast cancer research focuses on using mathematical methods to delineate and classify breast masses. Advancements in medical research have led to remarkable progress in breast cancer detection, however, according to Acho, the methods of diagnosis currently available commercially, lack a detailed finesse in accurately identifying the boundaries of breast mass lesions.

Inspiration drawn from pioneer

Drawing inspiration from the Mammography Computer Aided Diagnosis Development and Implementation (CAADI) project, which was the brainchild Prof William Rae, Head of the department of Medical Physics, Acho’s MMedSc thesis titled ‘Segmentation and Quantitative Characterisation of Breast Masses Imaged using Digital Mammography’ investigates classical segmentation algorithms, texture features and classification of breast masses in mammography. It is a rare research topic in South Africa.

 Characterisation of breast masses, involves delineating and analysing the breast mass region on a mammogram in order to determine its shape, margin and texture composition. Computer-aided diagnosis (CAD) program detects the outline of the mass lesion, and uses this information together with its texture features to determine the clinical traits of the mass. CAD programs mark suspicious areas for second look or areas on a mammogram that the radiologist might have overlooked. It can act as an independent double reader of a mammogram in institutions where there is a shortage of trained mammogram readers. 

Light at the end of the tunnel

Breast cancer is one of the most common malignancies among females in South Africa. “The challenge is being able to apply these mathematical methods in the medical field to help find solutions to specific medical problems, and that’s what I hope my research will do,” she says.

By using mathematics, physics and digital imaging to understand breast masses on mammograms, her research bridges the gap between these fields to provide algorithms which are applicable in medical image interpretation.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept