Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
31 January 2020 | Story Ruan Bruwer | Photo Gallo Images
Three Kovsies in Springbok coaching team
Rassie Erasmus (left), director of rugby at the South African Rugby Union, congratulates Jacques Nienaber on being the new Springbok head coach, the position Erasmus previously filled. Both are former students of the University of the Free State.

The appointment of Jacques Nienaber as the new Springbok head coach means that a former Kovsie will once again coach the Springbok team. Nienaber takes over from Rassie Erasmus, another Kovsie alumnus.

It was also announced that Daan Human, like Erasmus a former Shimla player who went on to play for the Springboks, will be the scrum consultant. Erasmus will continue in the role of director of rugby and will be part of the Springbok coaching team, which means that half of the six coaches in the team can call themselves Kovsies. 

Nienaber joined Erasmus in the Springbok coaching team in February 2018 as defensive coach. At the 2019 Rugby World Cup, the Springboks conceded the fewest tries (four) of all the teams. Erasmus will be responsible for the strategy and results, with Nienaber taking operational control. 

It will be the first time Nienaber steps into a head-coach role. He started as physiotherapist with the Shimlas U20 team, before going into strength and conditioning and later becoming a defence coach.“This is a massive honour and responsibility, but I think I have a good understanding of what it entails, especially in this new structure. It’s a big step-up for me. I would not have accepted if I didn’t believe I could be successful,” said the 47-year-old Nienaber.

“I’ve been worked with Rassie in a coaching capacity for nearly two decades now and we have a very good idea of how each of us thinks.” The two first worked together in the Shimlas U20 team, where Erasmus was the captain and Nienaber the physio.

Besides Nienaber, two other former Shimlas are currently in a head-coach role – Neil Powell at the Springbok Sevens team and Franco Smith is coaching the Italian national team.


News Archive

Fight against Ebola virus requires more research
2014-10-22

 

Dr Abdon Atangana
Photo: Ifa Tshishonge
Dr Abdon Atangana, a postdoctoral researcher in the Institute for Groundwater Studies at the University of the Free State (UFS), wrote an article related to the Ebola virus: Modelling the Ebola haemorrhagic fever with the beta-derivative: Deathly infection disease in West African countries.

“The filoviruses belong to a virus family named filoviridae. This virus can cause unembellished haemorrhagic fever in humans and nonhuman monkeys. In literature, only two members of this virus family have been mentioned, namely the Marburg virus and the Ebola virus. However, so far only five species of the Ebola virus have been identified, including:  Ivory Coast, Sudan, Zaire, Reston and Bundibugyo.

“Among these families, the Ebola virus is the only member of the Zaire Ebola virus species and also the most dangerous, being responsible for the largest number of outbreaks.

“Ebola is an unusual, but fatal virus that causes bleeding inside and outside the body. As the virus spreads through the body, it damages the immune system and organs. Ultimately, it causes the blood-clotting levels in cells to drop. This leads to severe, uncontrollable bleeding.

Since all physical problems can be modelled via mathematical equation, Dr Atangana aimed in his research (the paper was published in BioMed Research International with impact factor 2.701) to analyse the spread of this deadly disease using mathematical equations. We shall propose a model underpinning the spread of this disease in a given Sub-Saharan African country,” he said.

The mathematical equations are used to predict the future behaviour of the disease, especially the spread of the disease among the targeted population. These mathematical equations are called differential equation and are only using the concept of rate of change over time.

However, there is several definitions for derivative, and the choice of the derivative used for such a model is very important, because the more accurate the model, the better results will be obtained.  The classical derivative describes the change of rate, but it is an approximation of the real velocity of the object under study. The beta derivative is the modification of the classical derivative that takes into account the time scale and also has a new parameter that can be considered as the fractional order.  

“I have used the beta derivative to model the spread of the fatal disease called Ebola, which has killed many people in the West African countries, including Nigeria, Sierra Leone, Guinea and Liberia, since December 2013,” he said.

The constructed mathematical equations were called Atangana’s Beta Ebola System of Equations (ABESE). “We did the investigation of the stable endemic points and presented the Eigen-Values using the Jacobian method. The homotopy decomposition method was used to solve the resulted system of equations. The convergence of the method was presented and some numerical simulations were done for different values of beta.

“The simulations showed that our model is more realistic for all betas less than 0.5.  The model revealed that, if there were no recovery precaution for a given population in a West African country, the entire population of that country would all die in a very short period of time, even if the total number of the infected population is very small.  In simple terms, the prediction revealed a fast spread of the virus among the targeted population. These results can be used to educate and inform people about the rapid spread of the deadly disease,” he said.

The spread of Ebola among people only occurs through direct contact with the blood or body fluids of a person after symptoms have developed. Body fluid that may contain the Ebola virus includes saliva, mucus, vomit, faeces, sweat, tears, breast milk, urine and semen. Entry points include the nose, mouth, eyes, open wounds, cuts and abrasions. Note should be taken that contact with objects contaminated by the virus, particularly needles and syringes, may also transmit the infection.

“Based on the predictions in this paper, we are calling on more research regarding this disease; in particular, we are calling on researchers to pay attention to finding an efficient cure or more effective prevention, to reduce the risk of contamination,” Dr Atangana said.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept