Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
31 January 2020 | Story Ruan Bruwer | Photo Gallo Images
Three Kovsies in Springbok coaching team
Rassie Erasmus (left), director of rugby at the South African Rugby Union, congratulates Jacques Nienaber on being the new Springbok head coach, the position Erasmus previously filled. Both are former students of the University of the Free State.

The appointment of Jacques Nienaber as the new Springbok head coach means that a former Kovsie will once again coach the Springbok team. Nienaber takes over from Rassie Erasmus, another Kovsie alumnus.

It was also announced that Daan Human, like Erasmus a former Shimla player who went on to play for the Springboks, will be the scrum consultant. Erasmus will continue in the role of director of rugby and will be part of the Springbok coaching team, which means that half of the six coaches in the team can call themselves Kovsies. 

Nienaber joined Erasmus in the Springbok coaching team in February 2018 as defensive coach. At the 2019 Rugby World Cup, the Springboks conceded the fewest tries (four) of all the teams. Erasmus will be responsible for the strategy and results, with Nienaber taking operational control. 

It will be the first time Nienaber steps into a head-coach role. He started as physiotherapist with the Shimlas U20 team, before going into strength and conditioning and later becoming a defence coach.“This is a massive honour and responsibility, but I think I have a good understanding of what it entails, especially in this new structure. It’s a big step-up for me. I would not have accepted if I didn’t believe I could be successful,” said the 47-year-old Nienaber.

“I’ve been worked with Rassie in a coaching capacity for nearly two decades now and we have a very good idea of how each of us thinks.” The two first worked together in the Shimlas U20 team, where Erasmus was the captain and Nienaber the physio.

Besides Nienaber, two other former Shimlas are currently in a head-coach role – Neil Powell at the Springbok Sevens team and Franco Smith is coaching the Italian national team.


News Archive

Extending new discoveries in the deep subsurface – UFS paper published in Nature Communications
2015-11-30



Scanning electron microscopy of some of the Eukarya recovered from two different mines. (a) Dochmiotrema sp. (Plathyelminthes), (b) A. hemprichi (Annelida), (c) Mylonchulus brachyurus (Nematoda), (d) Amphiascoides (Arthropoda). Scale bar, 50 µm (a,b), 100 µm (c), 20 µm (d).

Following the discovery of the first Eukarya in the deep subsurface (Nature, 2010) by a research group from the Department of Microbial, Biochemical, and Food Biotechnology at the University of the Free State (UFS) and their international collaborators, intense interest has developed in understanding the diversity of more complex organisms living in these extreme environments.

Prof Gaetan Borgonie from Extreme Life Isyensya, together with a group of UFS researchers, took this research further, resulting in a paper on this research released in Nature Communications – impact factor 11.47.  This paper is an extension of the first reports of more complex life at great depths, and their abilities to survive these harsh conditions.

Ten authors from the UFS contributed with the array of expertise needed to define this discovery. The group was supported by staff from the different mining groups, long-term leading collaborators from the USA and Canada, and the idea specialist driver of the paper, Prof Borganie.

“After a sampling campaign that lasted more than two years, we identified that Platyhelminthes, Rotifera, Annelida and Arthropoda are thriving at 1.4 km depths in fissure water up to 12,000-years old in the South African mines of Driefontein and Kopanang,” said Prof Borgonie, who was appointed as associated researcher in the Department of Microbial, Biochemical, and Food Biotechnology.

This paper really opens a “can of worms” so to speak. According to Prof Esta van Heerden from the Department of Microbial, Biochemical and Food Biotechnology at the UFS they extended to define protozoa and fungi. “However, they are present in low numbers,” she said.

Characterisation of the different species reveals that many are opportunistic organisms. In house-adapted video equipment was used to film inside the fissure for the home of the organisms.

This is the first-known study to demonstrate the in situ distribution of biofilms on fissure rock faces using video documentation. Calculations suggest that food, not dissolved oxygen, is the limiting factor for population growth. The discovery of a group of complex multicellular organisms in the underground has important implications for the search for life on other planets in our solar system.

More articles

The strange beasts that live in solid rock deep underground
A microscopic ‘zoo’ is found deep, deep underground

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept