Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
03 January 2020 | Story Leonie Bolleurs | Photo Leonie Bolleurs
Research read more
Dr Sandy Steenhuisen conducts research on invasive alien plants and the effect they have on the environment.

South Africa, and more specifically the Free State, is known as a drought-stricken area. Invasive alien plants are gulping up much-needed water resources, draining our land. 

Pollination ecologist, Dr Sandy-Lynn Steenhuisen, who is also expanding into invasive alien research, is conducting research on the reproductive ecology of exotic plant species in montane grasslands. As an affiliate of the Afromontane Research Unit (ARU) and Senior Lecturer in the Department of Plant Sciences at the University of the Free State (UFS), this research is conducted with her students and a host of collaborators from Rhodes University (Centre for Biological Control), Stellenbosch University (Centre for Invasion Biology), and the University of KwaZulu-Natal.  

She says substantial funding is being made available for research on invasive species due to the extent of the problem nationally and globally. Their research is being funded and conducted in collaboration with plant ecology experts, Dr Kim Canavan (Rhodes University), Dr Grant Martin (Rhodes University), Prof David Richardson (Stellenbosch University), and Prof Colleen Downs (University of KwaZulu-Natal), as well as UFS postgraduate students Anthony Mapaura and Lehlohonolo Donald Adams, and UFS postdoctoral fellow, Dr Nicholas Le Maitre. 

Besides working with a host of collaborators, the ARU was this year also invited to join the prestigious Mountain Invasion Research Network (MIREN), a global network of academics who are passionate about understanding the invasion of mountains by non-native species and its impact on local mountain ecologies.  

Black Wattle makes rivers run dry 

Alien plant species that often escape from planted gardens or plantations, thrive in disturbed, mismanaged and eroded areas. One of the biggest issues regarding alien plant invasion is that many people are not aware of the harmful effects it has on the environment, and that they continue to plant it or allow invaders to spread. 

A large percentage of trees in urban South Africa are invasive alien trees. They dry out the soil and displace our native plants. Coming from other countries and without their former enemies or competitors, they flourish. Our indigenous plants are not used to these plants and are easily displaced.  

An example of a very aggressive invasive alien plant in the region, and in South Africa as a whole, is Black Wattle. It uses excessive water, so bad that rivers run dry and riverbanks become eroded. It also chemically excludes many native plants from growing among them. 

Research content 1
Anthony Mapaura’s research focuses on Nassella, an invasive alien grass in the elevated areas of the Eastern Cape mountains.
This plant is extremely difficult to control and is the cause of a large number of  cattle dying. (Photo: Leonie Bolleurs)

This species is very hard to control. If you burn it or cut it off, it will grow back. In addition, it drops a great number of seeds into the soil, spreading without any difficulty.  

Another invader, Yellow Firethorn, which is being investigated by master’s student Adams, invades high-elevation grassland areas, reducing grazing potential and ultimately leading to unproductive farmland and choked rivers.  

“Our mountain grassland systems are not adapted to compete with the invasion of these alien trees. Since they are using excessive water resources, natural streams should return in many instances if they are removed,” says Dr Steenhuisen. 

Nassella displacing indigenous plants 

Mapaura focuses his doctoral study on an invasive grass genus, Nassella, originating from the Americas. Growing in the elevated areas of the Eastern Cape mountains, this species is the cause of a large number of cattle dying.  

The plant, which is not palatable and consists mostly of fibre, is eaten by cattle – especially during dry seasons when there is not much natural grazing available. It is difficult to digest, forming a ball in the stomach of the animals that ultimately results in death.  

“It is extremely difficult and costly to control, and natural grasses cannot compete with it. In Australia, many farmers have had to abandon their farms once these plants invaded, as the cost of control was higher than the value of the land. A similar situation could unfold in South Africa, and it’s a race to learn all we can about the ecology of this genus to inform policy and practice,” says Dr Steenhuisen. 

The solution, fighting for survival 

She said to effectively address these invasions, we need to understand everything about the reproductive ecology of the plants to develop specific biological or chemical control methods to target and destroy the plant at an appropriate life stage. We also need to know if the plants are using native animals (if not just wind and water) to pollinate their flowers and spread their seeds. “Organisations investigating the effectiveness of biological control agents and chemical products will be able to use our research data on the plants’ ecology to focus efforts on specific life stages,” she adds. 

Invasive alien plants also contribute to South Africa losing the genetic integrity of certain native plants with which they hybridise. For example, pure genetic lines of native white stinkwood trees are potentially mixing with exotics and hybrids, adding to a loss of diversity and genetic purity – a project being undertaken by postdoctoral fellow, Dr Le Maitre.  

Dr Steenhuisen urges South Africans to plant the genetically pure South African white stinkwood trees, especially since alien species and hybrids are often sold by garden centres as if they were the indigenous species.  

Dr Vincent Ralph Clark, Head of the Afromontane Research Unit at the UFS, has a vision to start a nursery for high-elevation indigenous plants. “A great number of nurseries do not supply pure indigenous trees, but hybrids,” says Dr Steenhuisen.  

 

News Archive

Fight against Ebola virus requires more research
2014-10-22

 

Dr Abdon Atangana
Photo: Ifa Tshishonge
Dr Abdon Atangana, a postdoctoral researcher in the Institute for Groundwater Studies at the University of the Free State (UFS), wrote an article related to the Ebola virus: Modelling the Ebola haemorrhagic fever with the beta-derivative: Deathly infection disease in West African countries.

“The filoviruses belong to a virus family named filoviridae. This virus can cause unembellished haemorrhagic fever in humans and nonhuman monkeys. In literature, only two members of this virus family have been mentioned, namely the Marburg virus and the Ebola virus. However, so far only five species of the Ebola virus have been identified, including:  Ivory Coast, Sudan, Zaire, Reston and Bundibugyo.

“Among these families, the Ebola virus is the only member of the Zaire Ebola virus species and also the most dangerous, being responsible for the largest number of outbreaks.

“Ebola is an unusual, but fatal virus that causes bleeding inside and outside the body. As the virus spreads through the body, it damages the immune system and organs. Ultimately, it causes the blood-clotting levels in cells to drop. This leads to severe, uncontrollable bleeding.

Since all physical problems can be modelled via mathematical equation, Dr Atangana aimed in his research (the paper was published in BioMed Research International with impact factor 2.701) to analyse the spread of this deadly disease using mathematical equations. We shall propose a model underpinning the spread of this disease in a given Sub-Saharan African country,” he said.

The mathematical equations are used to predict the future behaviour of the disease, especially the spread of the disease among the targeted population. These mathematical equations are called differential equation and are only using the concept of rate of change over time.

However, there is several definitions for derivative, and the choice of the derivative used for such a model is very important, because the more accurate the model, the better results will be obtained.  The classical derivative describes the change of rate, but it is an approximation of the real velocity of the object under study. The beta derivative is the modification of the classical derivative that takes into account the time scale and also has a new parameter that can be considered as the fractional order.  

“I have used the beta derivative to model the spread of the fatal disease called Ebola, which has killed many people in the West African countries, including Nigeria, Sierra Leone, Guinea and Liberia, since December 2013,” he said.

The constructed mathematical equations were called Atangana’s Beta Ebola System of Equations (ABESE). “We did the investigation of the stable endemic points and presented the Eigen-Values using the Jacobian method. The homotopy decomposition method was used to solve the resulted system of equations. The convergence of the method was presented and some numerical simulations were done for different values of beta.

“The simulations showed that our model is more realistic for all betas less than 0.5.  The model revealed that, if there were no recovery precaution for a given population in a West African country, the entire population of that country would all die in a very short period of time, even if the total number of the infected population is very small.  In simple terms, the prediction revealed a fast spread of the virus among the targeted population. These results can be used to educate and inform people about the rapid spread of the deadly disease,” he said.

The spread of Ebola among people only occurs through direct contact with the blood or body fluids of a person after symptoms have developed. Body fluid that may contain the Ebola virus includes saliva, mucus, vomit, faeces, sweat, tears, breast milk, urine and semen. Entry points include the nose, mouth, eyes, open wounds, cuts and abrasions. Note should be taken that contact with objects contaminated by the virus, particularly needles and syringes, may also transmit the infection.

“Based on the predictions in this paper, we are calling on more research regarding this disease; in particular, we are calling on researchers to pay attention to finding an efficient cure or more effective prevention, to reduce the risk of contamination,” Dr Atangana said.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept