Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
03 January 2020 | Story Leonie Bolleurs | Photo Leonie Bolleurs
Research read more
Dr Sandy Steenhuisen conducts research on invasive alien plants and the effect they have on the environment.

South Africa, and more specifically the Free State, is known as a drought-stricken area. Invasive alien plants are gulping up much-needed water resources, draining our land. 

Pollination ecologist, Dr Sandy-Lynn Steenhuisen, who is also expanding into invasive alien research, is conducting research on the reproductive ecology of exotic plant species in montane grasslands. As an affiliate of the Afromontane Research Unit (ARU) and Senior Lecturer in the Department of Plant Sciences at the University of the Free State (UFS), this research is conducted with her students and a host of collaborators from Rhodes University (Centre for Biological Control), Stellenbosch University (Centre for Invasion Biology), and the University of KwaZulu-Natal.  

She says substantial funding is being made available for research on invasive species due to the extent of the problem nationally and globally. Their research is being funded and conducted in collaboration with plant ecology experts, Dr Kim Canavan (Rhodes University), Dr Grant Martin (Rhodes University), Prof David Richardson (Stellenbosch University), and Prof Colleen Downs (University of KwaZulu-Natal), as well as UFS postgraduate students Anthony Mapaura and Lehlohonolo Donald Adams, and UFS postdoctoral fellow, Dr Nicholas Le Maitre. 

Besides working with a host of collaborators, the ARU was this year also invited to join the prestigious Mountain Invasion Research Network (MIREN), a global network of academics who are passionate about understanding the invasion of mountains by non-native species and its impact on local mountain ecologies.  

Black Wattle makes rivers run dry 

Alien plant species that often escape from planted gardens or plantations, thrive in disturbed, mismanaged and eroded areas. One of the biggest issues regarding alien plant invasion is that many people are not aware of the harmful effects it has on the environment, and that they continue to plant it or allow invaders to spread. 

A large percentage of trees in urban South Africa are invasive alien trees. They dry out the soil and displace our native plants. Coming from other countries and without their former enemies or competitors, they flourish. Our indigenous plants are not used to these plants and are easily displaced.  

An example of a very aggressive invasive alien plant in the region, and in South Africa as a whole, is Black Wattle. It uses excessive water, so bad that rivers run dry and riverbanks become eroded. It also chemically excludes many native plants from growing among them. 

Research content 1
Anthony Mapaura’s research focuses on Nassella, an invasive alien grass in the elevated areas of the Eastern Cape mountains.
This plant is extremely difficult to control and is the cause of a large number of  cattle dying. (Photo: Leonie Bolleurs)

This species is very hard to control. If you burn it or cut it off, it will grow back. In addition, it drops a great number of seeds into the soil, spreading without any difficulty.  

Another invader, Yellow Firethorn, which is being investigated by master’s student Adams, invades high-elevation grassland areas, reducing grazing potential and ultimately leading to unproductive farmland and choked rivers.  

“Our mountain grassland systems are not adapted to compete with the invasion of these alien trees. Since they are using excessive water resources, natural streams should return in many instances if they are removed,” says Dr Steenhuisen. 

Nassella displacing indigenous plants 

Mapaura focuses his doctoral study on an invasive grass genus, Nassella, originating from the Americas. Growing in the elevated areas of the Eastern Cape mountains, this species is the cause of a large number of cattle dying.  

The plant, which is not palatable and consists mostly of fibre, is eaten by cattle – especially during dry seasons when there is not much natural grazing available. It is difficult to digest, forming a ball in the stomach of the animals that ultimately results in death.  

“It is extremely difficult and costly to control, and natural grasses cannot compete with it. In Australia, many farmers have had to abandon their farms once these plants invaded, as the cost of control was higher than the value of the land. A similar situation could unfold in South Africa, and it’s a race to learn all we can about the ecology of this genus to inform policy and practice,” says Dr Steenhuisen. 

The solution, fighting for survival 

She said to effectively address these invasions, we need to understand everything about the reproductive ecology of the plants to develop specific biological or chemical control methods to target and destroy the plant at an appropriate life stage. We also need to know if the plants are using native animals (if not just wind and water) to pollinate their flowers and spread their seeds. “Organisations investigating the effectiveness of biological control agents and chemical products will be able to use our research data on the plants’ ecology to focus efforts on specific life stages,” she adds. 

Invasive alien plants also contribute to South Africa losing the genetic integrity of certain native plants with which they hybridise. For example, pure genetic lines of native white stinkwood trees are potentially mixing with exotics and hybrids, adding to a loss of diversity and genetic purity – a project being undertaken by postdoctoral fellow, Dr Le Maitre.  

Dr Steenhuisen urges South Africans to plant the genetically pure South African white stinkwood trees, especially since alien species and hybrids are often sold by garden centres as if they were the indigenous species.  

Dr Vincent Ralph Clark, Head of the Afromontane Research Unit at the UFS, has a vision to start a nursery for high-elevation indigenous plants. “A great number of nurseries do not supply pure indigenous trees, but hybrids,” says Dr Steenhuisen.  

 

News Archive

Studies to reveal correlation between terrain, energy use, and giraffe locomotion
2016-11-18



More than half of giraffes in captivity in Europe are afflicted by lameness. This high prevalence represents an important welfare issue, similar to other large zoo animals.

According to Dr Chris Basu, a veterinarian at the Royal Veterinary College in the UK, giraffes in captivity are often afflicted by overgrown hooves, laminitis and joint problems. Diagnosis and treatment is limited by our understanding of anatomy and function, more specifically the locomotion of these animals. Although the giraffe is such a well-known and iconic animal, relatively little has been studied about their locomotor behaviour.

Dr Basu recently visited South Africa to do fieldwork on the locomotion of giraffes as part of his PhD studies under the mentorship of world-renowned Professor of Evolutionary Biomechanics, Prof John Hutchinson. This project is a joint venture between Dr Basu and Dr Francois Deacon, researcher in the Department of Animal, Wildlife, and Grassland Sciences at the UFS. Dr Deacon is a specialist in giraffe habitat-related research. 

Together Prof Hutchinson and Drs Deacon and Basu form a research group, working on studies about giraffe locomotion.

Wild giraffe population decrease by 40% in past decade

“Locomotion is one of the most common animal behaviours and comes with a significant daily energetic cost. Studying locomotion of wild animals aids us in making estimates of this energetic cost. Such estimates are useful in understanding how giraffes fit into ecosystems. Future conservation efforts will be influenced by knowledge of the energy demands in giraffes.

“Understanding aspects of giraffe locomotion also helps us to understand the relationships between anatomy, function and evolution. This is relevant to our basic understanding of the natural world, as well as to conservation and veterinary issues,” said Dr Deacon.

Locomotion study brings strategy for specialist foot care

On face value it seems as if foot disease pathologies are more common in zoo giraffes than in wild giraffes. “However, we need a good sample of data from both populations to prove this assumption,” said Dr Basu. 

This phenomenon is not well understood at the moment, but it’s thought that diet, substrate (e.g. concrete, straw, sand and grass) and genetics play a part in foot disease in giraffes. “Understanding how the feet are mechanically loaded during common activities (standing, walking, running) gives our research group ideas of where the highest strains occur, and later how these can be reduced through corrective foot trimming,” said Dr Basu.

Through the studies on giraffe locomotion, the research group plans to devise strategies for corrective foot trimming. At the moment, foot trimming is done with the best evidence available, which is extrapolation from closely related animals such as cattle. “But we know that giraffes’ specialist anatomy will likely demand specialist foot care,” Dr Basu said.

Studying giraffes in smaller versus larger spaces

The research group has begun to study the biomechanics of giraffe walking by looking at the kinematics (the movement) and the kinetics (the forces involved in movement) during walking strides. For this he studied adult giraffes at three zoological parks in the UK. 

However, due to the close proximity of fencing and buildings, it is not practical to study fast speeds in a zoo setting. 

A setting such as the Willem Pretorius Nature Reserve, near Ventersburg in the Free State, Kwaggafontein Nature Reserve, near Colesberg in the Karoo, and the Woodland Hills Wildlife Estate in Bloemfontein are all ideal for studying crucial aspects such as “faster than walking” speeds and gaits to measure key parameters (such as stride length, step frequency and stride duration). These studies are important to understand how giraffe form and function are adapted to their full range of locomotor behaviours. It also helps to comprehend the limits on athletic capacity in giraffes and how these compare to other animals. 

Drones open up unique opportunities for studying giraffes

The increasing availability of unmanned aerial vehicles (UAVs)/drones opens up unique opportunities for studying locomotion in animals like giraffes. Cameras mounted onto remotely controlled UAVs are a straightforward way to obtain high-quality video footage of giraffes while they run at different speeds.

“Using two UAVs, we have collected high definition slow motion video footage of galloping giraffes from three locations in the Free State. We have also collected detailed information about the terrain that the giraffes walked and ran across. From this we have created 3D maps of the ground. These maps will be used to examine the preferred terrain types for giraffes, and to see how different terrains affect their locomotion and energy use,” said Dr Deacon.

“The raw data (videos) will be digitised to obtain the stride parameters and limb angles of the animals. Later this will be combined with anatomical data and an estimation of limb forces to estimate the power output of the limbs and how that changes between different terrains,” said Dr Basu.


Related articles:

23 August 2016: Research on locomotion of giraffes valuable for conservation of this species
9 March 2016:Giraffe research broadcast on National Geographic channel
18 Sept 2015 Researchers reach out across continents in giraffe research
29 May 2015: Researchers international leaders in satellite tracking in the wildlife environment

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept