Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
03 January 2020 | Story Leonie Bolleurs | Photo Leonie Bolleurs
Endangerd read more
Prof Aliza le Roux and Dr Mpho Ramoejane at the vulture restaurant, nearly 30 km from Clarens. This is a safe space for vultures to feed, in an effort to increase their declining numbers.

Endangered bird species such as the Cape and bearded vultures attract bird enthusiasts from afar. These birds are close to extinction in Southern Africa and classified as near threatened on the International Union for Conservation Nature (IUCN) list, with a strong global decline in their numbers.  

A viewing hide constructed by honorary rangers in the Golden Gate Highlands National Park, about 30 km from Clarens in the Eastern Free State, offers tourists the opportunity to view and photograph the birds as they feed at one of South Africa’s close to 200 vulture restaurants. 

This tourist attraction is situated in a good location from a conservation perspective, with vulture colonies and – importantly – water close by, according to Prof Aliza le Roux

Prof Le Roux, Associate Professor in the Department of Zoology and Entomology on the Qwaqwa Campus of the University of the Free State (UFS) and affiliated to the Afromontane Research Unit (ARU), is working with one of her students, Agnes Mkotywa, on a study regarding the effectiveness of this feeding site. 

Poisoned carcasses big threat to vultures 

She said there are quite a few vulture restaurants in the area, with the most famous one at Giants Castle.  

A vulture restaurant is an area where park rangers drop non-poisoned carcasses, mostly donated by nearby farmers. Poisoned carcasses, bait for other animals such as jackals and caracals, are one of the biggest threats to vultures. 

The vulture restaurants, an effort to get vulture populations to grow, are within the reach of Cape and bearded vultures. But, as found in Mkotywa’s study, the initiative has its shortcomings.  

 

Prof Le Roux said the current structures are open, and black-backed jackals come to feed any time of the day and night. “There is more feeding of the jackals than the intended vultures, and the current structure does not protect the vultures against the jackals,” she said. Jackal activity at the vulture restaurant is significantly higher than elsewhere in the park, as supported by camera traps set up in the park by Dr Mpho Ramoejane, currently an ARU postdoctoral researcher. 

Raised platform a possible solution 

“This is one of our primary research findings. A possible solution is to put up fences. It will, however, keep everything else out and will be an eyesore from a tourist perspective. A raised platform that could exclude the jackals and still provide the vultures with a large landing place, might work,” Prof Le Roux added. 

Another finding was that carcasses are not dropped regularly enough. Vultures cannot predict when there will be food.  

These findings will be published in peer-reviewed outlets, but it will also be communicated to the management of the South African National Parks (SANParks) to address the problem. “SANParks is involved in the project and wants the information. They said they needed the information and will build on it,” said Prof Le Roux.  

Once the suggested changes are implemented, she is excited to scientifically document how these changes are making a difference. This has the potential to guide the management and development of vulture restaurants elsewhere in South Africa and the world. 

News Archive

Nuclear Medicine on the forefront of cancer research
2017-07-10

Description: Nuclear Medicine on the forefront of cancer research Tags: Nuclear Medicine, cancer research, Dr Je’nine Horn-Lodewyk’s, tumour detection method, cancer, Department of Nuclear Medicine 

Dr Je’nine Horn-Lodewyk’s tumour detection method
could be the cost-effective breakthrough needed to decrease
the mortality rate in breast cancer patients.
Photo: Anja Aucamp

The field of Nuclear Medicine in South Africa and the rest of the world are expanding rapidly due to the development of hybrid cameras and new radiopharmaceuticals. These developments have a huge impact on the diagnosis and therapy of cancer.

The most advanced of these cameras, Positron emission tomography combined with normal CTs (PETCT), are not yet widely available in South Africa due to the cost of the cameras and the radiopharmaceuticals. A more cost-effective alternative can be of great benefit. To achieve this, the focus should be on developing new radiopharmaceuticals that can be used with the current cost-effective gamma cameras, according to University of the Free State researcher, Dr Je’nine Horn-Lodewyk from the Department of Nuclear Medicine.

Fluorodeoxyglucose (18F-FDG), a radiolabelled glucose analogue, is currently the radiopharmaceutical most commonly used in PET/CT imaging for mainly oncology indications. Although it is considered the gold standard for imaging in several malignancies, it does have certain disadvantages. An 18F-FDG PET/CT diagnostic imaging study can cost between R25 000 and R35 000 for a single patient in the private sector. The 18F-FDG is also more radioactive, which requires much stricter handling and shielding to avoid high radiation dosages to staff and patients.

Successful research potential innovative solution
In the search for the ideal radiopharmaceutical for tumour detection, the South African National Nuclear Energy Corporation (Necsa) developed a local synthesis process for ethylenedicysteine-deoxyglucose (EC-DG). EC-DG is also a glucose analogue similar to FDG. They succeeded in labelling the compound with Technetium-99-metastable-pertechnetate (99mTcO4-), the most common nuclear medicine isotope used for approximately 95% of nuclear medicine procedures, creating 99mTc-EC-DG.

In partnership with Dr Horn-Lodewyk, this compound was successfully used in various animal models and clinical scenarios, resulting in approval by the Medicine Control Council to use it in a human study. Research is also planned in order to investigate diagnostic accuracy in other cancers like lymphoma.  The end result of this research can produce a radiopharmaceutical that is cost effective, does not require the use of costly specialised equipment, has no significant side-effects, no special patient preparation, renders late imaging possible, and has decreased radiation risks.

Dr Horn-Lodewyk is grateful for the support of her mentor, Prof Anton Otto, as well as Dr Gert Engelbrecht, Head of the Department of Nuclear Medicine, Prof Jan Rijn Zeevaart from North-West University’s Preclinical Drug Development Platform and Necsa, and Judith Wagener from Necsa. This innovative research would also not have been possible without the financial assistance of Dr Glen Taylor and Eleanor van der Westhuizen in the Directorate of Research Development.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept