Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
03 January 2020 | Story Leonie Bolleurs | Photo Leonie Bolleurs
Endangerd read more
Prof Aliza le Roux and Dr Mpho Ramoejane at the vulture restaurant, nearly 30 km from Clarens. This is a safe space for vultures to feed, in an effort to increase their declining numbers.

Endangered bird species such as the Cape and bearded vultures attract bird enthusiasts from afar. These birds are close to extinction in Southern Africa and classified as near threatened on the International Union for Conservation Nature (IUCN) list, with a strong global decline in their numbers.  

A viewing hide constructed by honorary rangers in the Golden Gate Highlands National Park, about 30 km from Clarens in the Eastern Free State, offers tourists the opportunity to view and photograph the birds as they feed at one of South Africa’s close to 200 vulture restaurants. 

This tourist attraction is situated in a good location from a conservation perspective, with vulture colonies and – importantly – water close by, according to Prof Aliza le Roux

Prof Le Roux, Associate Professor in the Department of Zoology and Entomology on the Qwaqwa Campus of the University of the Free State (UFS) and affiliated to the Afromontane Research Unit (ARU), is working with one of her students, Agnes Mkotywa, on a study regarding the effectiveness of this feeding site. 

Poisoned carcasses big threat to vultures 

She said there are quite a few vulture restaurants in the area, with the most famous one at Giants Castle.  

A vulture restaurant is an area where park rangers drop non-poisoned carcasses, mostly donated by nearby farmers. Poisoned carcasses, bait for other animals such as jackals and caracals, are one of the biggest threats to vultures. 

The vulture restaurants, an effort to get vulture populations to grow, are within the reach of Cape and bearded vultures. But, as found in Mkotywa’s study, the initiative has its shortcomings.  

 

Prof Le Roux said the current structures are open, and black-backed jackals come to feed any time of the day and night. “There is more feeding of the jackals than the intended vultures, and the current structure does not protect the vultures against the jackals,” she said. Jackal activity at the vulture restaurant is significantly higher than elsewhere in the park, as supported by camera traps set up in the park by Dr Mpho Ramoejane, currently an ARU postdoctoral researcher. 

Raised platform a possible solution 

“This is one of our primary research findings. A possible solution is to put up fences. It will, however, keep everything else out and will be an eyesore from a tourist perspective. A raised platform that could exclude the jackals and still provide the vultures with a large landing place, might work,” Prof Le Roux added. 

Another finding was that carcasses are not dropped regularly enough. Vultures cannot predict when there will be food.  

These findings will be published in peer-reviewed outlets, but it will also be communicated to the management of the South African National Parks (SANParks) to address the problem. “SANParks is involved in the project and wants the information. They said they needed the information and will build on it,” said Prof Le Roux.  

Once the suggested changes are implemented, she is excited to scientifically document how these changes are making a difference. This has the potential to guide the management and development of vulture restaurants elsewhere in South Africa and the world. 

News Archive

Plant scientists address wheat rust diseases at SASPP congress
2015-02-02

Pictured from the left are: Prof Zakkie Pretorius, Dr Botma Visser and Howard Castelyn.
Photo: Supplied

In his research, Dr Botma Visser, researcher in the Department of Plant Sciences at the University of the Free State, highlighted the population dynamics of the stem rust fungus (Puccinia graminis f. sp. tritici) in Southern Africa. In recent years, two foreign stem rust races were introduced to South Africa, and a local virulence adaptation occurred in a third.

All of these races form part of the Ug99 group, a highly virulent collection of rust races endangering wheat production in many parts of the world. Despite the fact that half of the members of the Ug99 race group is prevalent in South Africa, Dr Visser’s work has clearly shown that Ug99 did not have its origin here. This emphasised the need to include neighbouring countries in the annual stem rust surveys, to proactively identify new races that could threaten local wheat production. In his research, Dr Visser also mentioned the way in which he has optimised modern molecular tools to accurately detect Ug99 isolates.

Dr Visser is one of three scientists from the Department of Plant Sciences that addressed delegates attending the biennial congress of the Southern African Society for Plant Pathology (SASPP) on the Bloemfontein Campus earlier this month on progress regarding research on wheat rust diseases conducted at the UFS.

Howard Castelyn, a PhD student in Plant Sciences, presented his research on quantifying fungal growth of the stem rust pathogen in wheat varieties displaying genetic resistance. This resistance, which is best expressed in adult plants, has the potential to remain durable in the presence of new rust variants. His presentation at the congress focused on optimising microscopic and molecular techniques to track fungal development in stem tissues of adult plants. These results now allow scientists to link rust infection levels and cellular responses with particular resistance genes expressed by the wheat plant, and contributing to the understanding and exploitation of durable resistance.

Prof Zakkie Pretorius presented his research, explaining how new genetic diversity for resistance to the stripe (yellow) rust fungus (Puccinia striiformis) is discovered, analysed and applied in South Africa. This research, conducted in collaboration with Dr Renée Prins and her team at CenGen, is unravelling the genetic basis of stripe rust resistance in a promising wheat line identified by Dr Willem Boshoff, a plant breeder at Pannar. The line and DNA markers to track the resistance genes will soon be introduced to South African wheat breeding programmes.

The rust research programme at the UFS contributes significantly to the successful control of these important crop diseases.

In addition to the contributions by the UFS, rust fungi featured prominently at the SASPP, with first reports of new diseases on sugar cane and Acacia and Eucalyptus trees in South Africa. A case study of the use of a rust fungus as a biological control agent for invasive plant species in the Western Cape, was also presented.

 

For more information or enquiries contact news@ufs.ac.za .

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept