Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
03 January 2020 | Story Leonie Bolleurs | Photo Leonie Bolleurs
Endangerd read more
Prof Aliza le Roux and Dr Mpho Ramoejane at the vulture restaurant, nearly 30 km from Clarens. This is a safe space for vultures to feed, in an effort to increase their declining numbers.

Endangered bird species such as the Cape and bearded vultures attract bird enthusiasts from afar. These birds are close to extinction in Southern Africa and classified as near threatened on the International Union for Conservation Nature (IUCN) list, with a strong global decline in their numbers.  

A viewing hide constructed by honorary rangers in the Golden Gate Highlands National Park, about 30 km from Clarens in the Eastern Free State, offers tourists the opportunity to view and photograph the birds as they feed at one of South Africa’s close to 200 vulture restaurants. 

This tourist attraction is situated in a good location from a conservation perspective, with vulture colonies and – importantly – water close by, according to Prof Aliza le Roux

Prof Le Roux, Associate Professor in the Department of Zoology and Entomology on the Qwaqwa Campus of the University of the Free State (UFS) and affiliated to the Afromontane Research Unit (ARU), is working with one of her students, Agnes Mkotywa, on a study regarding the effectiveness of this feeding site. 

Poisoned carcasses big threat to vultures 

She said there are quite a few vulture restaurants in the area, with the most famous one at Giants Castle.  

A vulture restaurant is an area where park rangers drop non-poisoned carcasses, mostly donated by nearby farmers. Poisoned carcasses, bait for other animals such as jackals and caracals, are one of the biggest threats to vultures. 

The vulture restaurants, an effort to get vulture populations to grow, are within the reach of Cape and bearded vultures. But, as found in Mkotywa’s study, the initiative has its shortcomings.  

 

Prof Le Roux said the current structures are open, and black-backed jackals come to feed any time of the day and night. “There is more feeding of the jackals than the intended vultures, and the current structure does not protect the vultures against the jackals,” she said. Jackal activity at the vulture restaurant is significantly higher than elsewhere in the park, as supported by camera traps set up in the park by Dr Mpho Ramoejane, currently an ARU postdoctoral researcher. 

Raised platform a possible solution 

“This is one of our primary research findings. A possible solution is to put up fences. It will, however, keep everything else out and will be an eyesore from a tourist perspective. A raised platform that could exclude the jackals and still provide the vultures with a large landing place, might work,” Prof Le Roux added. 

Another finding was that carcasses are not dropped regularly enough. Vultures cannot predict when there will be food.  

These findings will be published in peer-reviewed outlets, but it will also be communicated to the management of the South African National Parks (SANParks) to address the problem. “SANParks is involved in the project and wants the information. They said they needed the information and will build on it,” said Prof Le Roux.  

Once the suggested changes are implemented, she is excited to scientifically document how these changes are making a difference. This has the potential to guide the management and development of vulture restaurants elsewhere in South Africa and the world. 

News Archive

Studies to reveal correlation between terrain, energy use, and giraffe locomotion
2016-11-18



More than half of giraffes in captivity in Europe are afflicted by lameness. This high prevalence represents an important welfare issue, similar to other large zoo animals.

According to Dr Chris Basu, a veterinarian at the Royal Veterinary College in the UK, giraffes in captivity are often afflicted by overgrown hooves, laminitis and joint problems. Diagnosis and treatment is limited by our understanding of anatomy and function, more specifically the locomotion of these animals. Although the giraffe is such a well-known and iconic animal, relatively little has been studied about their locomotor behaviour.

Dr Basu recently visited South Africa to do fieldwork on the locomotion of giraffes as part of his PhD studies under the mentorship of world-renowned Professor of Evolutionary Biomechanics, Prof John Hutchinson. This project is a joint venture between Dr Basu and Dr Francois Deacon, researcher in the Department of Animal, Wildlife, and Grassland Sciences at the UFS. Dr Deacon is a specialist in giraffe habitat-related research. 

Together Prof Hutchinson and Drs Deacon and Basu form a research group, working on studies about giraffe locomotion.

Wild giraffe population decrease by 40% in past decade

“Locomotion is one of the most common animal behaviours and comes with a significant daily energetic cost. Studying locomotion of wild animals aids us in making estimates of this energetic cost. Such estimates are useful in understanding how giraffes fit into ecosystems. Future conservation efforts will be influenced by knowledge of the energy demands in giraffes.

“Understanding aspects of giraffe locomotion also helps us to understand the relationships between anatomy, function and evolution. This is relevant to our basic understanding of the natural world, as well as to conservation and veterinary issues,” said Dr Deacon.

Locomotion study brings strategy for specialist foot care

On face value it seems as if foot disease pathologies are more common in zoo giraffes than in wild giraffes. “However, we need a good sample of data from both populations to prove this assumption,” said Dr Basu. 

This phenomenon is not well understood at the moment, but it’s thought that diet, substrate (e.g. concrete, straw, sand and grass) and genetics play a part in foot disease in giraffes. “Understanding how the feet are mechanically loaded during common activities (standing, walking, running) gives our research group ideas of where the highest strains occur, and later how these can be reduced through corrective foot trimming,” said Dr Basu.

Through the studies on giraffe locomotion, the research group plans to devise strategies for corrective foot trimming. At the moment, foot trimming is done with the best evidence available, which is extrapolation from closely related animals such as cattle. “But we know that giraffes’ specialist anatomy will likely demand specialist foot care,” Dr Basu said.

Studying giraffes in smaller versus larger spaces

The research group has begun to study the biomechanics of giraffe walking by looking at the kinematics (the movement) and the kinetics (the forces involved in movement) during walking strides. For this he studied adult giraffes at three zoological parks in the UK. 

However, due to the close proximity of fencing and buildings, it is not practical to study fast speeds in a zoo setting. 

A setting such as the Willem Pretorius Nature Reserve, near Ventersburg in the Free State, Kwaggafontein Nature Reserve, near Colesberg in the Karoo, and the Woodland Hills Wildlife Estate in Bloemfontein are all ideal for studying crucial aspects such as “faster than walking” speeds and gaits to measure key parameters (such as stride length, step frequency and stride duration). These studies are important to understand how giraffe form and function are adapted to their full range of locomotor behaviours. It also helps to comprehend the limits on athletic capacity in giraffes and how these compare to other animals. 

Drones open up unique opportunities for studying giraffes

The increasing availability of unmanned aerial vehicles (UAVs)/drones opens up unique opportunities for studying locomotion in animals like giraffes. Cameras mounted onto remotely controlled UAVs are a straightforward way to obtain high-quality video footage of giraffes while they run at different speeds.

“Using two UAVs, we have collected high definition slow motion video footage of galloping giraffes from three locations in the Free State. We have also collected detailed information about the terrain that the giraffes walked and ran across. From this we have created 3D maps of the ground. These maps will be used to examine the preferred terrain types for giraffes, and to see how different terrains affect their locomotion and energy use,” said Dr Deacon.

“The raw data (videos) will be digitised to obtain the stride parameters and limb angles of the animals. Later this will be combined with anatomical data and an estimation of limb forces to estimate the power output of the limbs and how that changes between different terrains,” said Dr Basu.


Related articles:

23 August 2016: Research on locomotion of giraffes valuable for conservation of this species
9 March 2016:Giraffe research broadcast on National Geographic channel
18 Sept 2015 Researchers reach out across continents in giraffe research
29 May 2015: Researchers international leaders in satellite tracking in the wildlife environment

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept