Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
10 July 2020 | Story Thabo Kessah | Photo Charl Devenish
The handover was done by Thomas September, ABSA Head Regional Coverage: Relationship Banking. With him are a student, Emily Ndlovu, Ntokozo Nkabinde (Institutional Advancement) and Tshenolo Thibeletsa (ICT).

“I am still in disbelief. Before I had this laptop, I was borrowing my cousin's laptop to do my academic tasks.”

These are the words of final-year Biochemistry and Food Science student, Xoliswa Khumalo, one of 200 students who recently became recipients of a generous donation of laptops from ABSA. In its endeavour to make a contribution towards saving the 2020 academic year, ABSA identified deserving students.

Xoliswa continued: “This laptop will help me type my assignments, since all of them need to be typed. I will also be able to view my slides and watch videos of my lectures. Now I do not have to wait for my cousin to watch movies. I am free to use mine for as long as I want.”

Another recipient is Itumeleng Katjedi, a second-year Economics student. “Thank you very much for the contribution to making my education journey much easier and simpler. I will be sure to strive to get the best grades,” she said.

“The University of the Free State (UFS) wishes to express its sincere appreciation to ABSA for investing in the future of those students who have little or no financial means to complete their studies remotely.  Much has changed and many lives are directly and indirectly affected by the COVID-19 pandemic,” says Rector and Vice-Chancellor, Prof Francis Petersen, in a letter to ABSA’s Dr Reaan Immelman, Head: Education Delivery Citizenship.  

“These are challenging times, not only for our country, but also for higher education institutions, as we work towards ensuring that the academic year is completed without any of our students being left behind.  The UFS is deeply thankful for the 200 laptops, which will make an immeasurable contribution to alleviating inequalities between the different student cohorts.  For these students, this gesture will not only advance their academic success; it will position them for the future world of work. ABSA will always be remembered as the co-creator of their future,” he adds in the letter.

Students from across the length and breadth of South Africa continue to receive their laptops via courier services, and those near the campuses are able to collect them while observing the COVID-19 regulations.

News Archive

Nuclear Medicine on the forefront of cancer research
2017-07-10

Description: Nuclear Medicine on the forefront of cancer research Tags: Nuclear Medicine, cancer research, Dr Je’nine Horn-Lodewyk’s, tumour detection method, cancer, Department of Nuclear Medicine 

Dr Je’nine Horn-Lodewyk’s tumour detection method
could be the cost-effective breakthrough needed to decrease
the mortality rate in breast cancer patients.
Photo: Anja Aucamp

The field of Nuclear Medicine in South Africa and the rest of the world are expanding rapidly due to the development of hybrid cameras and new radiopharmaceuticals. These developments have a huge impact on the diagnosis and therapy of cancer.

The most advanced of these cameras, Positron emission tomography combined with normal CTs (PETCT), are not yet widely available in South Africa due to the cost of the cameras and the radiopharmaceuticals. A more cost-effective alternative can be of great benefit. To achieve this, the focus should be on developing new radiopharmaceuticals that can be used with the current cost-effective gamma cameras, according to University of the Free State researcher, Dr Je’nine Horn-Lodewyk from the Department of Nuclear Medicine.

Fluorodeoxyglucose (18F-FDG), a radiolabelled glucose analogue, is currently the radiopharmaceutical most commonly used in PET/CT imaging for mainly oncology indications. Although it is considered the gold standard for imaging in several malignancies, it does have certain disadvantages. An 18F-FDG PET/CT diagnostic imaging study can cost between R25 000 and R35 000 for a single patient in the private sector. The 18F-FDG is also more radioactive, which requires much stricter handling and shielding to avoid high radiation dosages to staff and patients.

Successful research potential innovative solution
In the search for the ideal radiopharmaceutical for tumour detection, the South African National Nuclear Energy Corporation (Necsa) developed a local synthesis process for ethylenedicysteine-deoxyglucose (EC-DG). EC-DG is also a glucose analogue similar to FDG. They succeeded in labelling the compound with Technetium-99-metastable-pertechnetate (99mTcO4-), the most common nuclear medicine isotope used for approximately 95% of nuclear medicine procedures, creating 99mTc-EC-DG.

In partnership with Dr Horn-Lodewyk, this compound was successfully used in various animal models and clinical scenarios, resulting in approval by the Medicine Control Council to use it in a human study. Research is also planned in order to investigate diagnostic accuracy in other cancers like lymphoma.  The end result of this research can produce a radiopharmaceutical that is cost effective, does not require the use of costly specialised equipment, has no significant side-effects, no special patient preparation, renders late imaging possible, and has decreased radiation risks.

Dr Horn-Lodewyk is grateful for the support of her mentor, Prof Anton Otto, as well as Dr Gert Engelbrecht, Head of the Department of Nuclear Medicine, Prof Jan Rijn Zeevaart from North-West University’s Preclinical Drug Development Platform and Necsa, and Judith Wagener from Necsa. This innovative research would also not have been possible without the financial assistance of Dr Glen Taylor and Eleanor van der Westhuizen in the Directorate of Research Development.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept