Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
10 July 2020 | Story Thabo Kessah | Photo Charl Devenish
The handover was done by Thomas September, ABSA Head Regional Coverage: Relationship Banking. With him are a student, Emily Ndlovu, Ntokozo Nkabinde (Institutional Advancement) and Tshenolo Thibeletsa (ICT).

“I am still in disbelief. Before I had this laptop, I was borrowing my cousin's laptop to do my academic tasks.”

These are the words of final-year Biochemistry and Food Science student, Xoliswa Khumalo, one of 200 students who recently became recipients of a generous donation of laptops from ABSA. In its endeavour to make a contribution towards saving the 2020 academic year, ABSA identified deserving students.

Xoliswa continued: “This laptop will help me type my assignments, since all of them need to be typed. I will also be able to view my slides and watch videos of my lectures. Now I do not have to wait for my cousin to watch movies. I am free to use mine for as long as I want.”

Another recipient is Itumeleng Katjedi, a second-year Economics student. “Thank you very much for the contribution to making my education journey much easier and simpler. I will be sure to strive to get the best grades,” she said.

“The University of the Free State (UFS) wishes to express its sincere appreciation to ABSA for investing in the future of those students who have little or no financial means to complete their studies remotely.  Much has changed and many lives are directly and indirectly affected by the COVID-19 pandemic,” says Rector and Vice-Chancellor, Prof Francis Petersen, in a letter to ABSA’s Dr Reaan Immelman, Head: Education Delivery Citizenship.  

“These are challenging times, not only for our country, but also for higher education institutions, as we work towards ensuring that the academic year is completed without any of our students being left behind.  The UFS is deeply thankful for the 200 laptops, which will make an immeasurable contribution to alleviating inequalities between the different student cohorts.  For these students, this gesture will not only advance their academic success; it will position them for the future world of work. ABSA will always be remembered as the co-creator of their future,” he adds in the letter.

Students from across the length and breadth of South Africa continue to receive their laptops via courier services, and those near the campuses are able to collect them while observing the COVID-19 regulations.

News Archive

Fight against Ebola virus requires more research
2014-10-22

 

Dr Abdon Atangana
Photo: Ifa Tshishonge
Dr Abdon Atangana, a postdoctoral researcher in the Institute for Groundwater Studies at the University of the Free State (UFS), wrote an article related to the Ebola virus: Modelling the Ebola haemorrhagic fever with the beta-derivative: Deathly infection disease in West African countries.

“The filoviruses belong to a virus family named filoviridae. This virus can cause unembellished haemorrhagic fever in humans and nonhuman monkeys. In literature, only two members of this virus family have been mentioned, namely the Marburg virus and the Ebola virus. However, so far only five species of the Ebola virus have been identified, including:  Ivory Coast, Sudan, Zaire, Reston and Bundibugyo.

“Among these families, the Ebola virus is the only member of the Zaire Ebola virus species and also the most dangerous, being responsible for the largest number of outbreaks.

“Ebola is an unusual, but fatal virus that causes bleeding inside and outside the body. As the virus spreads through the body, it damages the immune system and organs. Ultimately, it causes the blood-clotting levels in cells to drop. This leads to severe, uncontrollable bleeding.

Since all physical problems can be modelled via mathematical equation, Dr Atangana aimed in his research (the paper was published in BioMed Research International with impact factor 2.701) to analyse the spread of this deadly disease using mathematical equations. We shall propose a model underpinning the spread of this disease in a given Sub-Saharan African country,” he said.

The mathematical equations are used to predict the future behaviour of the disease, especially the spread of the disease among the targeted population. These mathematical equations are called differential equation and are only using the concept of rate of change over time.

However, there is several definitions for derivative, and the choice of the derivative used for such a model is very important, because the more accurate the model, the better results will be obtained.  The classical derivative describes the change of rate, but it is an approximation of the real velocity of the object under study. The beta derivative is the modification of the classical derivative that takes into account the time scale and also has a new parameter that can be considered as the fractional order.  

“I have used the beta derivative to model the spread of the fatal disease called Ebola, which has killed many people in the West African countries, including Nigeria, Sierra Leone, Guinea and Liberia, since December 2013,” he said.

The constructed mathematical equations were called Atangana’s Beta Ebola System of Equations (ABESE). “We did the investigation of the stable endemic points and presented the Eigen-Values using the Jacobian method. The homotopy decomposition method was used to solve the resulted system of equations. The convergence of the method was presented and some numerical simulations were done for different values of beta.

“The simulations showed that our model is more realistic for all betas less than 0.5.  The model revealed that, if there were no recovery precaution for a given population in a West African country, the entire population of that country would all die in a very short period of time, even if the total number of the infected population is very small.  In simple terms, the prediction revealed a fast spread of the virus among the targeted population. These results can be used to educate and inform people about the rapid spread of the deadly disease,” he said.

The spread of Ebola among people only occurs through direct contact with the blood or body fluids of a person after symptoms have developed. Body fluid that may contain the Ebola virus includes saliva, mucus, vomit, faeces, sweat, tears, breast milk, urine and semen. Entry points include the nose, mouth, eyes, open wounds, cuts and abrasions. Note should be taken that contact with objects contaminated by the virus, particularly needles and syringes, may also transmit the infection.

“Based on the predictions in this paper, we are calling on more research regarding this disease; in particular, we are calling on researchers to pay attention to finding an efficient cure or more effective prevention, to reduce the risk of contamination,” Dr Atangana said.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept