Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
30 July 2020 | Story Valentino Ndaba | Photo Anja Aucamp
Dr Fumane Khanare opted to integrate poetry into her teaching practice, using innovative ways to keep the curriculum afloat and interesting at the same time.

The Coronavirus (COVID-19) lockdown has severely affected teaching and learning. Lecturers and students alike have been challenged to explore innovative ways to keep the curriculum afloat and interesting at the same time. Dr Fumane Khanare, Senior Lecturer in the Faculty of Education, has opted to integrate poetry into her teaching practice. Her Community Psychology students have shifted over the past few months from merely interacting with the course material to generating their own content.

Learning in the times of lockdown

According to Dr Khanare, the psycho-social impact of COVID-19 remains unknown as the world grapples with a backlog of information, accompanied by loss and grief. However, collaborative strides are being made in the right direction, considering that this is unchartered territory. “Recommendations advocating for online teaching and learning, bidding for free data, and laptops for the majority of students, especially those at the peripheries of a mainstream economy – and of course physical distancing-adhering wellness programmes – may enable effective teaching and learning.” 

Why poetry?

“Lurched in at the deep end and taking into account the students who are not well-equipped with the integration of information and communications technology in learning, is significant. This realisation led me to seek ways to help my students develop a deeper understanding and critical-thinking skills, as well as becoming self-motivated students amid COVID-19,” explained Dr Khanare.

Students were first tasked with analysing the poetry of Butler-Kisber (2002). Thereafter, they were required to write poems about COVID-19, underpinned by the Community Psychology in Education module. “The activity provided students with an opportunity to use and reinforce concepts learnt prior to the lockdown, monitor their own understanding and progress, plus motivate them to come to the lecture prepared – a function known as co-creators of knowledge,” she said.

The artistic creations of these students were circulated among peers for review, allowing them to move from the peripheries to the centre of knowledge production amid a pandemic. 

Digitising the education space

Beyond the classroom, Dr Khanare will attend the 2020 Women Academics in Higher Education Virtual Symposium. As the co-convener of the World Education Research Association-International Research Network, she continues to ensure that research-related activities continue, despite a ban on international travel.

News Archive

Link between champagne bubbles and the UFS?
2012-11-16

Prof. Lodewyk Kock with an example of a front page of the publication FEMS Yeast Research, as adapted by F. Belliard, FEMS Central Office.
Photo: Leatitia Pienaar
15 November 2012

What is the link between the bubbles in champagne and breakthrough research being done at the Mayo Clinic in America? Nano research being done at our university.

Prof. Lodewyk Kock of Biotechnology says a human being consists of millions of minute cells that are invisible to the eye. The nano technology team at the UFS have developed a technique that allows researchers to look into such a cell, as well as other microorganisms. In this way, they can get an idea of what the cell’s “insides” look like.

The UFS team – consisting of Profs. Kock, Hendrik Swart (Physics), Pieter van Wyk (Centre for Microscopy), as well as Dr Chantel Swart (Biotechnology), Dr Carlien Pohl (Biotechnology) and Liza Coetsee (Physics) – were amazed to see that the inside of cells consist of a maze of small tunnels or blisters. Each tunnel is about 100 and more nanometres in diameter – about one ten thousandth of a millimetre – that weaves through the cells in a maze.

It was also found that these tunnels are the “lungs” of the cells. Academics doing research on yeast have had to sit up and take notice of the research being done at the UFS – to the extent that these “lungs” will appear on the front page of the highly acclaimed FEMS Yeast Research for all of 2013.

The Mayo Clinic, in particular, now wants to work with the UFS to study cancer cells in more detail in order to fight this disease, says Prof. Kock. The National Cancer Institute of America has also shown interest. This new nano technology for biology can assist in the study and development of nano medicine that can be used in the treatment of cancer and other life threatening diseases. Nano medicine uses nano metal participles that are up to one billionth of a metre in size.

Prof. Kock says laboratory tests indicate that nano medicine can improve the efficacy of anti-cancer medicine, which makes the treatment less toxic. “According to the Mayo Clinic team, nano particles are considered as a gold cartridge which is being fired directly at a cancer tumour. This is compared to fine shot that spreads through the body and also attacks healthy cells.”

“This accuracy implies that the chemotherapy dose can be lowered with fewer side effects. The Mayo Clinic found that one-tenth of the normal dosage is more effective against pancreas cancer in this way than the full dosage with a linkage to nano particles. According to the clinic, this nano medicine could also delay the spread of cancer,” says Prof. Kock.

The nano particles are used as messengers that convey anti-cancer treatment to cancer cells, where it then selectively kills the cancer cells. The transport and transfer of these medicines with regard to gold nano particles can be traced with the UFS’s nano technology to collect more information, especially where it works on the cell.

“With the new nano technology of the UFS, it is possible to do nano surgery on the cells by slicing the cells in nanometre thin slices while the working of the nano medicine is studied. In this way, it can be established if the nano medicine penetrates the cells or if it is only associated with the tiny tunnels,” says Prof. Kock.

And in champagne the small “lungs” are responsible for the bubbles. The same applies to beer and with this discovery a whole new reach field opens for scientists.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept