Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
30 July 2020 | Story Valentino Ndaba | Photo Anja Aucamp
Dr Fumane Khanare opted to integrate poetry into her teaching practice, using innovative ways to keep the curriculum afloat and interesting at the same time.

The Coronavirus (COVID-19) lockdown has severely affected teaching and learning. Lecturers and students alike have been challenged to explore innovative ways to keep the curriculum afloat and interesting at the same time. Dr Fumane Khanare, Senior Lecturer in the Faculty of Education, has opted to integrate poetry into her teaching practice. Her Community Psychology students have shifted over the past few months from merely interacting with the course material to generating their own content.

Learning in the times of lockdown

According to Dr Khanare, the psycho-social impact of COVID-19 remains unknown as the world grapples with a backlog of information, accompanied by loss and grief. However, collaborative strides are being made in the right direction, considering that this is unchartered territory. “Recommendations advocating for online teaching and learning, bidding for free data, and laptops for the majority of students, especially those at the peripheries of a mainstream economy – and of course physical distancing-adhering wellness programmes – may enable effective teaching and learning.” 

Why poetry?

“Lurched in at the deep end and taking into account the students who are not well-equipped with the integration of information and communications technology in learning, is significant. This realisation led me to seek ways to help my students develop a deeper understanding and critical-thinking skills, as well as becoming self-motivated students amid COVID-19,” explained Dr Khanare.

Students were first tasked with analysing the poetry of Butler-Kisber (2002). Thereafter, they were required to write poems about COVID-19, underpinned by the Community Psychology in Education module. “The activity provided students with an opportunity to use and reinforce concepts learnt prior to the lockdown, monitor their own understanding and progress, plus motivate them to come to the lecture prepared – a function known as co-creators of knowledge,” she said.

The artistic creations of these students were circulated among peers for review, allowing them to move from the peripheries to the centre of knowledge production amid a pandemic. 

Digitising the education space

Beyond the classroom, Dr Khanare will attend the 2020 Women Academics in Higher Education Virtual Symposium. As the co-convener of the World Education Research Association-International Research Network, she continues to ensure that research-related activities continue, despite a ban on international travel.

News Archive

NRF grants of millions for Kovsie professors
2013-05-20

 

Prof Martin Ntwaeaborwa (left) and Prof Bennie Viljoen
20 May 2013


Two professors received research grants from the National Research Foundation (NRF). The money will be used for the purchase of equipment to add more value to their research and take the university further in specific research fields.

Prof Martin Ntwaeaborwa from the Department of Physics has received a R10 million award, following a successful application to the National Nanotechnology Equipment Programme (NNEP) of the NRF for a high-resolution field emission scanning electron microscope (SEM) with integrated cathodoluminescence (CL) and energy dispersive X-ray spectrometers (EDS).

Prof Bennie Viljoen from the Department of Microbial, Biochemical and Food Biotechnology has also been awarded R1,171 million, following a successful application to the Research Infrastructure Support Programme (RISP) for the purchase of a LECO CHN628 Series Elemental Analyser with a Sulphur add-on module.

Prof Ntwaeaborwa says the SEM-CL-EDS’ state-of-the art equipment combines three different techniques in one and it is capable of analysing a variety of materials ranging from bulk to individual nanoparticles. This combination is the first of its kind in Africa. This equipment is specifically designed for nanotechnology and can analyse particles as small as 5nm in diameter, a scale which the old tungsten SEM at the Centre of Microscopy cannot achieve.

The equipment will be used to simultaneously analyse the shapes and sizes of submicron particles, chemical composition and cathodoluminescence properties of materials. The SEM-CL-EDS is a multi-user facility and it will be used for multi- and interdisciplinary research involving physics, chemistry, materials science, life sciences and geological sciences. It will be housed at the Centre of Microscopy.
“I have no doubt that this equipment is going to give our university a great leap forward in research in the fields of electron microscopy and cathodoluminescence,” Prof Ntwaeaborwa said.

Prof Viljoen says the analyser is used to determine nitrogen, carbon/nitrogen, and carbon/hydrogen/nitrogen in organic matrices. The instrument utilises a combustion technique and provides a result within 4,5 minutes for all the elements being determined. In addition to the above, the machine also offers a sulphur add-on module which provides sulphur analysis for any element combination. The CHN 628 S module is specifically designed to determine the sulphur content in a wide variety of organic materials such as coal and fuel oils, as well as some inorganic materials such as soil, cement and limestone.

The necessity of environmental protection has stimulated the development of various methods, allowing the determination of different pollutants in the natural environment, including methods for determining inorganic nitrogen ions, carbon and sulphur. Many of the methods used so far have proven insufficiently sensitive, selective or inaccurate. The availability of the LECO analyser in a research programme on environmental pollution/ food security will facilitate accurate and rapid quantification of these elements. Ions in water, waste water, air, food products and other complex matrix samples have become a major problem and studies are showing that these pollutants are likely to cause severe declines in native plant communities and eventually food security.

“With the addition of the analyser, we will be able to identify these polluted areas, including air, water and land pollution, in an attempt to enhance food security,” Viljoen said. “Excess levels of nitrogen and phosphorous wreaking havoc on human health and food security, will be investigated.”

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept