Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
16 July 2020 | Story Leonie Bolleurs | Photo Supplied
The teaching project of Drs Matthew Huber and Martin Clark on utilising aerial photography and 3D models increased student engagement in Geology field studies.

The goal of an educator, as seen by Dr Matthew Huber and Dr Martin Clark, is to try and improve the understanding of students. They believe that by combining technological and geological elements within the framework of games, students not only learn but also enjoy the process.

Dr Huber and Dr Clark are from the Department of Geology at the University of the Free State (UFS).

By bringing innovative methods into their teaching processes, they have successfully enhanced student engagement and learning in Geology field studies.

Limited innovation equals limited engagement

As part of the third-year Economic Geology and Exploration Geology courses, students were taken on a field trip to the Vredefort impact structure and an active gold mine. At the Vredefort structure, they were able to view the rock types mined for gold – which are exposed on the surface – to prepare them to identify the rocks when going underground. They also visited an open-pit quarry that was mined for granite dimension stone in the 1950s.  

Fot the visit to the quarry, the students were given ‘traditional’ assignments in advance to make measurements, sketch relevant features, and write down observations. 

“We found that they were not particularly engaged in what they were doing; it was simply an assignment that was separated from any deeper meaning in their minds,” explains Dr Huber.

The status quo of student engagement was about to change. Dr Huber and Dr Clark put their heads together and had a long discussion on how they could improve the exercise. 

Innovative methods equal increase in engagement

“We realised that we could change the focus of the exercise entirely by framing it as a game. When the exercise started, the students were divided into ‘companies’, and then told that they had to pick blocks with particular features to extract from the quarry. They were given parameters concerning how much various aspects of the activity would cost and were then told to make as much money as possible. We did not give them any particular measurements but provided them with all the tools they needed.”

“This had a transformative effect on the students – instead of being bored with the quarry exercise, they were begging for more time to look at the rocks, coming up with innovative solutions on their own,” says Dr Huber.

He believes this is what student engagement means. “Even though we did not assign any particular measurements for the students to do, most of them were diligently making measurements and even arguing with one another about the best way to pick out blocks,” he adds.

To evaluate the students, Dr Clark brought in a technological aspect to the exercise. He made a 3D model of the quarry while the game was in progress, which was used at the end of the task. 

“The students showed us the blocks that they had picked out on the digital 3D model, which we could rapidly evaluate. In addition, they had an opportunity to look at the problem from a different perspective, resulting in ‘last minute’ innovative solutions. The exposure to this type of digital interaction on a traditional geological excursion has increased the ‘cool’ factor for the students and subjected them to new ways of problem-solving – similar to what they can expect later in their careers,” explains Dr Clark.


Innovative methods equal more possibilities

Both Drs Clark and Huber agree that the feedback they received from the students was amazing. “They did not want the assignment to end, and unanimously petitioned us for more time in the quarry, driven by their desire to make the best decisions for their groups. This level of passion from students has never been experienced by either instructor on any other field course,” adds Dr Huber. 

Although games are not a new concept in education, the two academics say they are not aware of any other institution that has attempted to digitally recreate a site for students in real time with this type of game. Drs Clark and Huber also wrote an academic article that is currently in revision for the Journal of Geoscience Education, titled, ‘Using gamification and fourth industrial revolution components to enhance student engagement in traditional field exercises for economic geology students’.

“The other wonderful aspect of this type of exercise is that we now have a digital archive of the site, and we can use that in both student training and our research. In times like now, where it is difficult to travel to the field, this type of model of geological exposures is invaluable,” says Dr Clark. 

They both believe the attitude and philosophy of the educators are very important in terms of student training. Regardless of whether face-to-face or online teaching is offered, there can be a good response to games used in the classroom.

“The more learning scenarios we can expose students to in fun, enjoyable, and innovative ways, the more likely we will spark lifelong passions that they can take with them through their careers. Our goal is not only to create good students but give them the tools to become thought leaders for the next generation of learners,” says Dr Clark.

News Archive

Tactile paving assists visually impaired
2017-10-28

Description: ' 000 Blind Tactile Paving Tags: Blind Tactile Paving

Tactile paving is being installed at pedestrian crossings to assist
visually-impaired persons at the UFS.
Photo: Supplied

Crossing roads and accessing buildings has always been a challenge for people with visual impairments. They had to rely on peripheral sounds, such as car brakes and cues. However, after the installation of tactile paving – paving with special textures assisting the visually impaired to feel the difference between walking around on campus and crossing the road, this will no longer be a problem at the University of the Free State (UFS).

This is one of several developments that University Estates’ Department of Facilities Planning has in the pipeline for 2017 in order to ensure that the university attains its key component in providing a high-quality student experience.

Maureen Khati, Assistant Director of Project Management: Facilities Planning, says, “We saw the need to install these paving blocks in strategic spaces, as identified by the Center for Universal Access and Disability Support (CUADS).” She says these blocks will make it easier for people with visual impairments.

Special features designed to aid visually-impaired persons

These installations have special features that will assist those students and employees with limited vision or blindness to navigate through pedestrian crossings and the different campus buildings. The university chose a unique design of tactile paving that focuses on warning and directing those with visual impairments.

UFS eager to improve accessibility and mobility

The university, and all the stakeholders involved in this initiative, are delighted to be embarking on this project and are looking forward to its successful execution. To improve accessibility and mobility, more accessible entrances and exits will be built, effective signage will be installed inside and outside buildings, but the most important aspect is that dedicated seating space will be made available in lecture rooms for special-needs students.

Khati says, “More focus has been put on installing ramps in all buildings to make them more accessible for people with disabilities, as well as other needs required to enhance accessibility at the UFS.”

For the UFS, this initiative is one of many to come, as extensive research is being done and priorities are implemented accordingly.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept