Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
16 July 2020 | Story Leonie Bolleurs | Photo Supplied
The teaching project of Drs Matthew Huber and Martin Clark on utilising aerial photography and 3D models increased student engagement in Geology field studies.

The goal of an educator, as seen by Dr Matthew Huber and Dr Martin Clark, is to try and improve the understanding of students. They believe that by combining technological and geological elements within the framework of games, students not only learn but also enjoy the process.

Dr Huber and Dr Clark are from the Department of Geology at the University of the Free State (UFS).

By bringing innovative methods into their teaching processes, they have successfully enhanced student engagement and learning in Geology field studies.

Limited innovation equals limited engagement

As part of the third-year Economic Geology and Exploration Geology courses, students were taken on a field trip to the Vredefort impact structure and an active gold mine. At the Vredefort structure, they were able to view the rock types mined for gold – which are exposed on the surface – to prepare them to identify the rocks when going underground. They also visited an open-pit quarry that was mined for granite dimension stone in the 1950s.  

Fot the visit to the quarry, the students were given ‘traditional’ assignments in advance to make measurements, sketch relevant features, and write down observations. 

“We found that they were not particularly engaged in what they were doing; it was simply an assignment that was separated from any deeper meaning in their minds,” explains Dr Huber.

The status quo of student engagement was about to change. Dr Huber and Dr Clark put their heads together and had a long discussion on how they could improve the exercise. 

Innovative methods equal increase in engagement

“We realised that we could change the focus of the exercise entirely by framing it as a game. When the exercise started, the students were divided into ‘companies’, and then told that they had to pick blocks with particular features to extract from the quarry. They were given parameters concerning how much various aspects of the activity would cost and were then told to make as much money as possible. We did not give them any particular measurements but provided them with all the tools they needed.”

“This had a transformative effect on the students – instead of being bored with the quarry exercise, they were begging for more time to look at the rocks, coming up with innovative solutions on their own,” says Dr Huber.

He believes this is what student engagement means. “Even though we did not assign any particular measurements for the students to do, most of them were diligently making measurements and even arguing with one another about the best way to pick out blocks,” he adds.

To evaluate the students, Dr Clark brought in a technological aspect to the exercise. He made a 3D model of the quarry while the game was in progress, which was used at the end of the task. 

“The students showed us the blocks that they had picked out on the digital 3D model, which we could rapidly evaluate. In addition, they had an opportunity to look at the problem from a different perspective, resulting in ‘last minute’ innovative solutions. The exposure to this type of digital interaction on a traditional geological excursion has increased the ‘cool’ factor for the students and subjected them to new ways of problem-solving – similar to what they can expect later in their careers,” explains Dr Clark.


Innovative methods equal more possibilities

Both Drs Clark and Huber agree that the feedback they received from the students was amazing. “They did not want the assignment to end, and unanimously petitioned us for more time in the quarry, driven by their desire to make the best decisions for their groups. This level of passion from students has never been experienced by either instructor on any other field course,” adds Dr Huber. 

Although games are not a new concept in education, the two academics say they are not aware of any other institution that has attempted to digitally recreate a site for students in real time with this type of game. Drs Clark and Huber also wrote an academic article that is currently in revision for the Journal of Geoscience Education, titled, ‘Using gamification and fourth industrial revolution components to enhance student engagement in traditional field exercises for economic geology students’.

“The other wonderful aspect of this type of exercise is that we now have a digital archive of the site, and we can use that in both student training and our research. In times like now, where it is difficult to travel to the field, this type of model of geological exposures is invaluable,” says Dr Clark. 

They both believe the attitude and philosophy of the educators are very important in terms of student training. Regardless of whether face-to-face or online teaching is offered, there can be a good response to games used in the classroom.

“The more learning scenarios we can expose students to in fun, enjoyable, and innovative ways, the more likely we will spark lifelong passions that they can take with them through their careers. Our goal is not only to create good students but give them the tools to become thought leaders for the next generation of learners,” says Dr Clark.

News Archive

UFS presents sport concussion programme for schools
2008-11-14

The Sports Medicine Clinic at the University of the Free State (UFS) will present a sports concussion programme for schools in the Free State.

“The Pharos Schools Concussion Programme makes the latest methods and technology in concussion management available to learners who play contact sport,” says Dr Louis Holtzhausen, Programme Director of Sports Medicine at the UFS.

The great risk of concussion is that there is an uncertainty about when a player can return to a sport with safety and with the minimum complications in the brain. This programme fills that gap to a large extent.

“By using this programme, no player who suffers concussion will return to play before it is medically safe to do so. The programme also educates players, parents, coaches and the medical fraternity on how to manage sports concussion,” says Dr Holtzhausen.

The programme has been designed for hockey, soccer, cricket, rugby and other contact and collision sports.

SA Rugby has used the programme for professional players for the last five years and advocates that all school rugby players should participate in the programme.

Several sports teams from schools in and around Bloemfontein as well as the University’s Shimla and Irawa rugby teams have already been tested. This will provide invaluable information in the management of possible head injuries.

“We can now give definite guidelines to players and coaches regarding the safe return of players to teams after such an injury. It takes a lot of the guesswork out of the management of concussion and provides peace of mind to coaches, parents and players regarding serious injuries,” says Dr Holtzhausen.

By enrolling in the concussion programme, learners and their parents are ensured of among others:

A baseline computer brain-function test before the start of the season.
Information on how to recognise and treat concussion, including a fieldside information card for the player’s team.
A free consultation and neurological examination by a sports physician after any suspected concussion.
As many brain-function tests and sports-physician consultations as necessary after any concussion, until complete recovery.
Referral to a network of specialists if necessary.

The Pharos Programme uses a cognitive function evaluation called Cogsport. This is a neurophysiological test that measures brain function before the season starts. In this way, a baseline standard is established and, should concussion occur during the season, the extent of it can be measured according to the baseline and rehabilitation.

“Once we have the baseline values, the concussed player’s return to those levels must be monitored. He/she can return to light exercise in the meantime and semi- and full-contact can be introduced at appropriate times,” says Dr Holtzhausen.

The cost of enrolment is R200 per learner, regardless of the number of concussions suffered or sports physician consultations received. “By enrolling in this programme, parents will ensure that their child has the best chance of avoiding the potentially serious consequences of concussion, including learning disabilities, recurrent concussions, epileptic fits and even death,” says Dr Holtzhausen.

More information on the programme can be obtained from Ms Arina Otto at 051 401 2530.

Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
14 November 2008
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept