Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
16 July 2020 | Story Leonie Bolleurs | Photo Supplied
The teaching project of Drs Matthew Huber and Martin Clark on utilising aerial photography and 3D models increased student engagement in Geology field studies.

The goal of an educator, as seen by Dr Matthew Huber and Dr Martin Clark, is to try and improve the understanding of students. They believe that by combining technological and geological elements within the framework of games, students not only learn but also enjoy the process.

Dr Huber and Dr Clark are from the Department of Geology at the University of the Free State (UFS).

By bringing innovative methods into their teaching processes, they have successfully enhanced student engagement and learning in Geology field studies.

Limited innovation equals limited engagement

As part of the third-year Economic Geology and Exploration Geology courses, students were taken on a field trip to the Vredefort impact structure and an active gold mine. At the Vredefort structure, they were able to view the rock types mined for gold – which are exposed on the surface – to prepare them to identify the rocks when going underground. They also visited an open-pit quarry that was mined for granite dimension stone in the 1950s.  

Fot the visit to the quarry, the students were given ‘traditional’ assignments in advance to make measurements, sketch relevant features, and write down observations. 

“We found that they were not particularly engaged in what they were doing; it was simply an assignment that was separated from any deeper meaning in their minds,” explains Dr Huber.

The status quo of student engagement was about to change. Dr Huber and Dr Clark put their heads together and had a long discussion on how they could improve the exercise. 

Innovative methods equal increase in engagement

“We realised that we could change the focus of the exercise entirely by framing it as a game. When the exercise started, the students were divided into ‘companies’, and then told that they had to pick blocks with particular features to extract from the quarry. They were given parameters concerning how much various aspects of the activity would cost and were then told to make as much money as possible. We did not give them any particular measurements but provided them with all the tools they needed.”

“This had a transformative effect on the students – instead of being bored with the quarry exercise, they were begging for more time to look at the rocks, coming up with innovative solutions on their own,” says Dr Huber.

He believes this is what student engagement means. “Even though we did not assign any particular measurements for the students to do, most of them were diligently making measurements and even arguing with one another about the best way to pick out blocks,” he adds.

To evaluate the students, Dr Clark brought in a technological aspect to the exercise. He made a 3D model of the quarry while the game was in progress, which was used at the end of the task. 

“The students showed us the blocks that they had picked out on the digital 3D model, which we could rapidly evaluate. In addition, they had an opportunity to look at the problem from a different perspective, resulting in ‘last minute’ innovative solutions. The exposure to this type of digital interaction on a traditional geological excursion has increased the ‘cool’ factor for the students and subjected them to new ways of problem-solving – similar to what they can expect later in their careers,” explains Dr Clark.


Innovative methods equal more possibilities

Both Drs Clark and Huber agree that the feedback they received from the students was amazing. “They did not want the assignment to end, and unanimously petitioned us for more time in the quarry, driven by their desire to make the best decisions for their groups. This level of passion from students has never been experienced by either instructor on any other field course,” adds Dr Huber. 

Although games are not a new concept in education, the two academics say they are not aware of any other institution that has attempted to digitally recreate a site for students in real time with this type of game. Drs Clark and Huber also wrote an academic article that is currently in revision for the Journal of Geoscience Education, titled, ‘Using gamification and fourth industrial revolution components to enhance student engagement in traditional field exercises for economic geology students’.

“The other wonderful aspect of this type of exercise is that we now have a digital archive of the site, and we can use that in both student training and our research. In times like now, where it is difficult to travel to the field, this type of model of geological exposures is invaluable,” says Dr Clark. 

They both believe the attitude and philosophy of the educators are very important in terms of student training. Regardless of whether face-to-face or online teaching is offered, there can be a good response to games used in the classroom.

“The more learning scenarios we can expose students to in fun, enjoyable, and innovative ways, the more likely we will spark lifelong passions that they can take with them through their careers. Our goal is not only to create good students but give them the tools to become thought leaders for the next generation of learners,” says Dr Clark.

News Archive

SA-YSSP scholars attend high level colloquium with policy makers and research stakeholders
2014-02-12

From the left are: Prof Frans Swanepoel, Deputy-Director of the African Doctoral Academy, Drs Aldo Stroebel, Executive Director: International Relations and Cooperation at the National Research Foundation, Priscilla Mensah, co-director of the SA-YSSP, and Ulf Dieckmann from the International Institute for Applied Systems Analysis and Dean of the SA-YSSP.
Photo: Renè-Jean van den Berg

Scholars taking part in the 2nd Southern African Young Scientists Summer Programme (SA-YSSP), attended a one-week seminar hosted by the African Doctoral Academy at the Stellenbosch University, which concluded with a colloquium at the Stellenbosch Institute for Advanced Study.

This was part of the final leg of their three-month stay and studies at the University of the Free State.

This seminar was a capacity development intervention with the purpose of equipping SA-YSSP young scholars with the skills to communicate their research work effectively with different audiences.

The 36 scholars were hand-picked from some of the world’s most promising and top researchers to take part in the novel three-month programme for advanced doctoral candidates. Their research interests closely aligned with the Department of Science and Technology’s (DST) grand challenges and the International Institute for Applied Systems Analysis’ (IIASA) current research programmes regarding global environmental, economic and social change.

The SA-YSSP is an initiative that contributes to the establishment, growth and enhancement of high-level strategic networks internationally. At the same time it develops capacity in systems analysis at the PhD and supervisory levels through research conducted in the areas of the Department of Science and Technology’s (DST) grand challenges.

At the colloquium, students were expected to showcase their work and research according to their various fields of expertise. High-profile policy makers and policy funders, as well as academia and fellow researchers judged and critiqued the work.

Dr Priscilla Mensah from the UFS and co-director of the programme, says it is important for the young scientists to frame their findings in a way that will be relevant to policy makers and the public at large.

“The partnership with the African Doctoral Academy was crucial in this regard since it is a capacity development entity aimed at strengthening and advancing doctoral education, training and scholarship on the African continent. The objective of this week-long capacity strengthening intervention is to equip the young scientists to be able to communicate their research effectively with different audiences, including potential funders and policy makers.

“I am convinced that the young scientists will no longer view policy makers as abstract entities, but as stakeholders who must be engaged to facilitate implementation of evidence-based policy.”

Dr Aldo Stroebel, Executive Director: International Relations and Cooperation, National Research Foundation, says the purpose of the colloquium is to bring together different sectors in one room to look at different challenges holistically, with an emphasis on systems analysis for a common goal.

The SA-YSSP forms part of an annual three-month education, academic training and research capacity-building programme jointly organised by IIASA, based in Austria, the National Research Foundation (NRF) and the DST. IIASA is an international research organisation that conducts policy-oriented scientific research in the three global problem areas of energy and climate change, food and water, and poverty and equity. South Africa’s engagements with IIASA, specifically with regard to the SA-YSSP, relate primarily to the DST’s Ten-Year Innovation Plan.

The UFS is the first institution outside Austria to host the summer programme. Researchers in the programme are, among others, from South Africa and the rest of the African continent, the USA, the Netherlands, India, Hungary, Austria and Germany.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept