Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
16 July 2020 | Story Leonie Bolleurs | Photo Supplied
The teaching project of Drs Matthew Huber and Martin Clark on utilising aerial photography and 3D models increased student engagement in Geology field studies.

The goal of an educator, as seen by Dr Matthew Huber and Dr Martin Clark, is to try and improve the understanding of students. They believe that by combining technological and geological elements within the framework of games, students not only learn but also enjoy the process.

Dr Huber and Dr Clark are from the Department of Geology at the University of the Free State (UFS).

By bringing innovative methods into their teaching processes, they have successfully enhanced student engagement and learning in Geology field studies.

Limited innovation equals limited engagement

As part of the third-year Economic Geology and Exploration Geology courses, students were taken on a field trip to the Vredefort impact structure and an active gold mine. At the Vredefort structure, they were able to view the rock types mined for gold – which are exposed on the surface – to prepare them to identify the rocks when going underground. They also visited an open-pit quarry that was mined for granite dimension stone in the 1950s.  

Fot the visit to the quarry, the students were given ‘traditional’ assignments in advance to make measurements, sketch relevant features, and write down observations. 

“We found that they were not particularly engaged in what they were doing; it was simply an assignment that was separated from any deeper meaning in their minds,” explains Dr Huber.

The status quo of student engagement was about to change. Dr Huber and Dr Clark put their heads together and had a long discussion on how they could improve the exercise. 

Innovative methods equal increase in engagement

“We realised that we could change the focus of the exercise entirely by framing it as a game. When the exercise started, the students were divided into ‘companies’, and then told that they had to pick blocks with particular features to extract from the quarry. They were given parameters concerning how much various aspects of the activity would cost and were then told to make as much money as possible. We did not give them any particular measurements but provided them with all the tools they needed.”

“This had a transformative effect on the students – instead of being bored with the quarry exercise, they were begging for more time to look at the rocks, coming up with innovative solutions on their own,” says Dr Huber.

He believes this is what student engagement means. “Even though we did not assign any particular measurements for the students to do, most of them were diligently making measurements and even arguing with one another about the best way to pick out blocks,” he adds.

To evaluate the students, Dr Clark brought in a technological aspect to the exercise. He made a 3D model of the quarry while the game was in progress, which was used at the end of the task. 

“The students showed us the blocks that they had picked out on the digital 3D model, which we could rapidly evaluate. In addition, they had an opportunity to look at the problem from a different perspective, resulting in ‘last minute’ innovative solutions. The exposure to this type of digital interaction on a traditional geological excursion has increased the ‘cool’ factor for the students and subjected them to new ways of problem-solving – similar to what they can expect later in their careers,” explains Dr Clark.


Innovative methods equal more possibilities

Both Drs Clark and Huber agree that the feedback they received from the students was amazing. “They did not want the assignment to end, and unanimously petitioned us for more time in the quarry, driven by their desire to make the best decisions for their groups. This level of passion from students has never been experienced by either instructor on any other field course,” adds Dr Huber. 

Although games are not a new concept in education, the two academics say they are not aware of any other institution that has attempted to digitally recreate a site for students in real time with this type of game. Drs Clark and Huber also wrote an academic article that is currently in revision for the Journal of Geoscience Education, titled, ‘Using gamification and fourth industrial revolution components to enhance student engagement in traditional field exercises for economic geology students’.

“The other wonderful aspect of this type of exercise is that we now have a digital archive of the site, and we can use that in both student training and our research. In times like now, where it is difficult to travel to the field, this type of model of geological exposures is invaluable,” says Dr Clark. 

They both believe the attitude and philosophy of the educators are very important in terms of student training. Regardless of whether face-to-face or online teaching is offered, there can be a good response to games used in the classroom.

“The more learning scenarios we can expose students to in fun, enjoyable, and innovative ways, the more likely we will spark lifelong passions that they can take with them through their careers. Our goal is not only to create good students but give them the tools to become thought leaders for the next generation of learners,” says Dr Clark.

News Archive

UFS extends footprint abroad
2015-12-14

In its constant pursuit of research excellence, the UFS has this year performed well in mainly two areas.

Apart from the research done by the UFS on national level, e.g. the involvement of its researchers with the SKA telescope, the pioneering work they do with the satellite tracking of giraffes, as well as research on trauma, forgiveness and reconciliation – to name but a few of the research areas, the university also has a research focus abroad.

Japan, Europe, America and Botswana. These are just some of the places where academics from the university are involved in research abroad.

Japan

Dr Dirk Opperman, Senior Lecturer at the Department of Microbial, Biochemical and Food Biotechnology, and Carmien Tolmie, a PhD student in the same department, visited the Okinawa Institute of Science and Technology in Onna, Japan, during November and December 2014. During the visit, experiments were performed in the Microbiology and Biochemistry of Secondary Metabolite Unit of Dr Holger Jenke-Kodama.

This formed part of a larger NRF-funded project on carcinogenic toxins produced in certain Aspergillus fungi. These fungi infect food and feedstuff and are a big concern in developing countries because it may lead to severe economic losses. The research ultimately aims to find inhibitors to block the production of these fungal toxins.



Europe and America

In 2012, an international network was established in the frame of the FP7-PEOPLE-2011-IRSES programme, called hERG-related risk assessment of botanicals (hERGscreen). The South African group included Dr Susan Bonnet and Dr Anke Wilhelm, both from the UFS Department of Chemistry.

Extracts from more than 450 South African plant species have been investigated systematically to assess the potential cardiotoxic risk of commonly consumed botanicals and supplements. The idea of the project, funded by the European Commission, is to identify safety liabilities of botanicals.

Other international partners included the University of Innsbruck, National and Kapodistrian University of Athens, Biomedical Research Foundation of the Academy of Athens, University of Basel, University of Vienna, University of Florida, Universidade Federal do Rio Grande do Sul, Universidade Federal de Santa Catarina.

Botswana


A memorandum of understanding was signed between the UFS and Botho University in Botswana in September 2015, which will be valid for three years.

The agreement, includes student and staff exchange programmes, collaborative research, teaching and learning and community engagement activities, sharing of results, and PhD/ MPhil guidance.

Young researchers

Another research focus of the UFS is the development of its young researchers. In 2015, the UFS has delivered 13 Y-rated researchers. Ten of the researchers are from the Faculty of Natural and Agricultural Sciences and three from the Faculty of the Humanities. Three of them received an Y1 rating from the NRF.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept