Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
16 July 2020 | Story Leonie Bolleurs | Photo Supplied
The teaching project of Drs Matthew Huber and Martin Clark on utilising aerial photography and 3D models increased student engagement in Geology field studies.

The goal of an educator, as seen by Dr Matthew Huber and Dr Martin Clark, is to try and improve the understanding of students. They believe that by combining technological and geological elements within the framework of games, students not only learn but also enjoy the process.

Dr Huber and Dr Clark are from the Department of Geology at the University of the Free State (UFS).

By bringing innovative methods into their teaching processes, they have successfully enhanced student engagement and learning in Geology field studies.

Limited innovation equals limited engagement

As part of the third-year Economic Geology and Exploration Geology courses, students were taken on a field trip to the Vredefort impact structure and an active gold mine. At the Vredefort structure, they were able to view the rock types mined for gold – which are exposed on the surface – to prepare them to identify the rocks when going underground. They also visited an open-pit quarry that was mined for granite dimension stone in the 1950s.  

Fot the visit to the quarry, the students were given ‘traditional’ assignments in advance to make measurements, sketch relevant features, and write down observations. 

“We found that they were not particularly engaged in what they were doing; it was simply an assignment that was separated from any deeper meaning in their minds,” explains Dr Huber.

The status quo of student engagement was about to change. Dr Huber and Dr Clark put their heads together and had a long discussion on how they could improve the exercise. 

Innovative methods equal increase in engagement

“We realised that we could change the focus of the exercise entirely by framing it as a game. When the exercise started, the students were divided into ‘companies’, and then told that they had to pick blocks with particular features to extract from the quarry. They were given parameters concerning how much various aspects of the activity would cost and were then told to make as much money as possible. We did not give them any particular measurements but provided them with all the tools they needed.”

“This had a transformative effect on the students – instead of being bored with the quarry exercise, they were begging for more time to look at the rocks, coming up with innovative solutions on their own,” says Dr Huber.

He believes this is what student engagement means. “Even though we did not assign any particular measurements for the students to do, most of them were diligently making measurements and even arguing with one another about the best way to pick out blocks,” he adds.

To evaluate the students, Dr Clark brought in a technological aspect to the exercise. He made a 3D model of the quarry while the game was in progress, which was used at the end of the task. 

“The students showed us the blocks that they had picked out on the digital 3D model, which we could rapidly evaluate. In addition, they had an opportunity to look at the problem from a different perspective, resulting in ‘last minute’ innovative solutions. The exposure to this type of digital interaction on a traditional geological excursion has increased the ‘cool’ factor for the students and subjected them to new ways of problem-solving – similar to what they can expect later in their careers,” explains Dr Clark.


Innovative methods equal more possibilities

Both Drs Clark and Huber agree that the feedback they received from the students was amazing. “They did not want the assignment to end, and unanimously petitioned us for more time in the quarry, driven by their desire to make the best decisions for their groups. This level of passion from students has never been experienced by either instructor on any other field course,” adds Dr Huber. 

Although games are not a new concept in education, the two academics say they are not aware of any other institution that has attempted to digitally recreate a site for students in real time with this type of game. Drs Clark and Huber also wrote an academic article that is currently in revision for the Journal of Geoscience Education, titled, ‘Using gamification and fourth industrial revolution components to enhance student engagement in traditional field exercises for economic geology students’.

“The other wonderful aspect of this type of exercise is that we now have a digital archive of the site, and we can use that in both student training and our research. In times like now, where it is difficult to travel to the field, this type of model of geological exposures is invaluable,” says Dr Clark. 

They both believe the attitude and philosophy of the educators are very important in terms of student training. Regardless of whether face-to-face or online teaching is offered, there can be a good response to games used in the classroom.

“The more learning scenarios we can expose students to in fun, enjoyable, and innovative ways, the more likely we will spark lifelong passions that they can take with them through their careers. Our goal is not only to create good students but give them the tools to become thought leaders for the next generation of learners,” says Dr Clark.

News Archive

Research contributes to improving quality of life for cancer patients
2016-11-21

Description: Inorganic Chemistry supervisors  Tags: Inorganic Chemistry supervisors

Inorganic Chemistry supervisors in the Radiopharmacy
Laboratory during the preparation of a typical complex
mixture to see how fast it reacts. Here are, from the left,
front: Dr Marietjie Schutte-Smith, Dr Alice Brink
(both scholars from the UFS Prestige
Scholar Programme), and Dr Truidie Venter (all three
are Thuthuka-funded researchers).
Back: Prof André Roodt and Dr Johan Venter.
Photo: Supplied

Imagine that you have been diagnosed with bone cancer and only have six months to live. You are in a wheelchair because the pain in your legs is so immense that you can’t walk anymore – similar to a mechanism eating your bones from the inside.

You are lucky though, since you could be injected with a drug to control the pain so effective that you will be able to get out of the wheelchair within a day-and-a-half and be able to walk again. Real-life incidents like these provide intense job satisfaction to Prof André Roodt, Head of Inorganic Chemistry at the University of the Free State (UFS). The research, which is conducted by the Inorganic Group at the UFS, contributes greatly to the availability of pain therapy that does not involve drugs, but improves the quality of life for cancer patients.

The research conducted by the Inorganic Group under the leadership of Prof Roodt, plays a major role in the clever design of model medicines to better detect and treat cancer.

The Department of Chemistry is one of approximately 10 institutions worldwide that conducts research on chemical mechanisms to identify and control cancer. “The fact that we are able to cooperate with the Departments of Nuclear Medicine and Medical Physics at the UFS, the Animal Research Centre, and other collaborators in South Africa and abroad, but especially the methodology we utilise to conduct research (studying the chemical manner in which drugs are absorbed in cancer as well as the time involved), enhances the possibility of making a contribution to cancer research,” says Prof Roodt.

Technique to detect cancer spots on bone
According to the professor, there are various ways of detecting cancer in the body. Cancer can, inter alia, be identified by analysing blood, X-rays (external) or through an internal technique where the patient is injected with a radioactive isotope.

Prof Roodt explains: “The doctor suspects that the patient has bone cancer and injects the person with a drug consisting of an isotope (only emits X-rays and does no damage to tissue) that is connected to a phosphonate (similar to those used for osteoporosis). Once the drug is injected, the isotope (Technetium-99m) moves to the spot on the bone where the cancer is located. The gamma rays in the isotope illuminate the area and the doctor can see exactly where treatment should be applied. The Technetium-99m has the same intensity gamma rays as normal X-rays and therefore operates the same as an internal X-ray supply.” With this technique, the doctor can see where the cancer spots are within a few hours.

The same technique can be used to identify inactive parts of the brain in Alzheimer patients, as well as areas of the heart where there is no blood supply or where the heart muscle is dead.

Therapeutic irradiation of cancer
For the treatment of pain connected with cancer, the isotope Rhenium-186 is injected. Similar to the manner in which the Technetium-99m phosphonate compound is ingested into the body, the Rhenium-186 phosphonate travels to the cancer spots. Patients thus receive therapeutic irradiation – a technique known as palliative therapy, which is excellent for treating pain. A dosage of this therapy usually lasts for about two months.

The therapy is, however, patient specific. The dosages should correspond with the occurrence and size of cancer spots in the patient’s body. First, the location of the cancer will be determined by means of a technetium scan. After that, the size of the area where the cancer occurs has to be determined. The dosage for addressing total pain distribution will be calculated according to these results.

Technique to detect cancer spots on soft tissue
Another technique to detect cancer as spots on bone or in soft tissue and organs throughout the body is by utilising a different type of irradiation, a so-called PET isotope. The Fluor-18 isotope is currently used widely, and in Pretoria a machine called a cyclotron was produced by Dr Gerdus Kemp, who is a former PhD graduate from the Inorganic Research Group. The F-18 is then hidden within a glucose molecule and a patient will be injected with the drug after being tranquillised and after the metabolism has been lowered considerably. The glucose, which is the ‘food' that cancer needs to grow, will then travel directly to the cancer area and the specific area where the cancer is located will thus be traced and ‘illuminated’ by the Fluor-18, which emits its own 'X-rays'.

In the late 80s, Prof Roodt did his own postdoctoral study on this research in the US. He started collaborating with the Department of Nuclear Medicine at the UFS in the early 90s, when he initiated testing for this research.

Through their research of more than 15 years, the Inorganic Group in the Department of Chemistry has made a major contribution to cancer research. Research on mechanisms for the detection of cancer, by designing new clever chemical agents, and the chemical ways in which these agents are taken up in the body, especially contributes to the development in terms of cancer therapy and imaging, and has been used by a number of hospitals in South Africa.

The future holds great promise
Prof Roodt and his team are already working on a bilateral study between the UFS and Kenya. It involves the linking of radio isotopes, as mentioned above, to known natural products (such as rooibos tea), which possess anti-cancer qualities.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept