Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
27 July 2020 | Story Nonsindiso Qwabe | Photo Charl Devenish
Ronet Vrey.

She is affectionately called ‘Tannie Ronet’ by the dozens of students coming her way, and Faculty of Education librarian Ronet Vrey would not have it any other way. While Vrey loves to remain behind the scenes, her passion for students makes her a big hit with every student crossing her path at the University of the Free State Library and Information Services on the Bloemfontein Campus. 

Vrey has been a librarian for as long as she can remember; a path she says was inspired by her educator mother. But instead of standing in front of a class, she gets to invest in students' academic journeys by being a helping hand in times of need. She is a UFS alumna, having graduated in 1988 with a degree in Library and Information Sciences, specialising in Education, Library Services, and Technology. 

"I was interested in library information services because back then, we were exploring the use of computers and moving in the direction of technology. Little did we know about digitisation and curation that would follow."

In 2005, she started working as librarian for the Faculty of the Humanities, before working jointly for the Faculties of the Humanities and Education. Since 2011, she has focused solely on the Faculty of Education, serving as the link between the library and the faculty. "I am supposed to focus only on students from the first year to honours level, but because of the relationships built there, many students often choose to stay with me. When they come to me for help, I don't say no," she says.

Information literacy a lifelong skill

Vrey shares the love for her job with her fellow librarians from other faculties. In 2019, the group presented a paper on embedded librarianship at the International Conference on Information Literacy (ICIL). She said they are in the process of having their paper published. "We want to be embedded in faculties in order to make students at the UFS information literate. If we can teach students information literacy skills to help themselves, we will have lifelong learners who can develop all the time, and you would have established a community of lifelong learners," she said.

One student who has benefited from Vrey's dedication and passion for students, is Dr Norma Lehasa, who obtained her PhD in 2019 after a seven-year journey due to ill health.

Vrey known as beacon of hope

Lehasa met Vrey in 2016, and says she owes her success to the likes of Vrey. Lehasa said each year when students graduate, it is people like Vrey who are supporting them behind the scenes to reach their goals. 

"My wonderful librarian, Ronet, made me focus and never give up. She used to go the extra mile for me, even teaching me how to use the resources to search for literature myself. The outcome of me being a Doctor of Philosophy today is because of people like Ronet. People like her need to be recognised for the good work that they do," Lehasa said.
Lehasa's PhD topic was: An Adult Learning Perspective on Professional Development in the Human Resources Department of the Free State Premier.

News Archive

UFS physicists publish in prestigious Nature journal
2017-10-16

Description: Boyden Observatory gravitational wave event Tags: Boyden Observatory, gravitational wave event, Dr Brian van Soelen, Hélène Szegedi, multi-wavelength astronomy 
Hélène Szegedi and Dr Brian van Soelen are scientists in the
Department of Physics at the University of the Free State.

Photo: Charl Devenish

In August 2017, the Boyden Observatory in Bloemfontein played a major role in obtaining optical observations of one of the biggest discoveries ever made in astrophysics: the detection of an electromagnetic counterpart to a gravitational wave event.
 
An article reporting on this discovery will appear in the prestigious science journal, Nature, in October 2017. Co-authors of the article, Dr Brian van Soelen and Hélène Szegedi, are from the Department of Physics at the University of the Free State (UFS). Both Dr Van Soelen and Szegedi are researching multi-wavelength astronomy.
 
Discovery is the beginning of a new epoch in astronomy
 
Dr van Soelen said: “These observations and this discovery are the beginning of a new epoch in astronomy. We are now able to not only undertake multi-wavelength observations over the whole electromagnetic spectrum (radio up to gamma-rays) but have now been able to observe the same source in both electromagnetic and gravitational waves.”
 
Until recently it was only possible to observe the universe using light obtained from astronomical sources. This all changed in February 2016 when LIGO (Laser Interferometer Gravitational-Wave Observatory) stated that for the first time they had detected gravitational waves on 14 September 2015 from the merger of two black holes. Since then, LIGO has announced the detection of two more such mergers. A fourth was just reported (27 September 2017), which was the first detected by both LIGO and Virgo. However, despite the huge amount of energy released in these processes, none of this is detectable as radiation in any part of the electromagnetic spectrum. Since the first LIGO detection astronomers have been searching for possible electromagnetic counterparts to gravitational wave detections. 
 
Large international collaboration of astronomers rushed to observe source
 
On 17 August 2017 LIGO and Virgo detected the first ever gravitational waves resulting from the merger of two neutron stars. Neutron star mergers produce massive explosions called kilonovae which will produce a specific electromagnetic signature. After the detection of the gravitational wave, telescopes around the world started searching for the optical counterpart, and it was discovered to be located in an elliptical galaxy, NGC4993, 130 million light years away. A large international collaboration of astronomers, including Dr Van Soelen and Szegedi, rushed to observe this source.
 
At the Boyden Observatory, Dr Van Soelen and Szegedi used the Boyden 1.5-m optical telescope to observe the source in the early evening, from 18 to 21 August. The observations obtained at Boyden Observatory, combined with observations from telescopes in Chile and Hawaii, confirmed that this was the first-ever detection of an electromagnetic counterpart to a gravitational wave event. Combined with the detection of gamma-rays with the Fermi-LAT telescope, this also confirms that neutron star mergers are responsible for short gamma-ray bursts.  
 
The results from these optical observations are reported in A kilonova as the electromagnetic counterpart to a gravitational-wave source published in Nature in October 2017.
 
“Our paper is one of a few that will be submitted by different groups that will report on this discovery, including a large LIGO-Virgo paper summarising all observations. The main results from our paper were obtained through the New Technology Telescope, the GROND system, and the Pan-STARRS system. The Boyden observations helped to obtain extra observations during the first 72 hours which showed that the light of the source decreased much quicker than was expected for supernova, classifying this source as a kilonova,” Dr Van Soelen said.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept