Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
17 July 2020 | Story Nitha Ramnath | Photo iStock
The UFS initiated a new community engagement programme to help communities take charge of their lives.

The University of the Free State (UFS) is launching a new community engagement programme to help communities take charge of their lives during and after the national lockdown caused by the COVID-19 pandemic. 

The E-Community Engagement Programme will run for the duration of the lockdown to ensure that the UFS continues to serve all people. This programme is one of more than 120 community development programmes and projects that the UFS is involved with this year.

Rev Billyboy Ramahlele, Director: Community Engagement, says this strategy is the result of the Institutional Transformation Plan, which seeks to deepen the university’s commitment towards the betterment of our communities by creating sustainable partnerships for development. “This programme is dedicated to assisting communities to take charge of their lives during and after this pandemic and will focus on sustainable livelihoods and family support”, he says.

With these community development programmes and projects, about 3 000 UFS students spend at least 127 000 hours per year engaging in 73 service-learning modules. This excludes the clinical work done by our medical and education students in the community through community-based education and inter-professional learning. The university’s 22 student volunteer associations play an important role in community development projects. Our academics and researchers contribute their intellectual resources through their involvement, teaching, and research in different aspects of community life.

The E-Community Engagement Programme refers to an alternative online/virtual community engagement platform aimed at facilitating continuously negotiated collaborations and partnerships between the UFS and the interest groups that it interacts with, aimed at building and exchanging the knowledge, skills, expertise, and resources required to develop and sustain society. Such alternative engagement stems from adapting physical face-to-face (f2f) community engagement to an e-environment. As a result of the uncertain state of restricted f2f engagement during the lockdown due to the COVID-19 pandemic, the focus of participation, dialogue, engaged learning, and teaching by university staff and students is on citizens actively participating in the development of their own lives and that of their surrounding communities.

Details of the E-Community Engagement Programme will soon be published on the UFS website, and will be presented on radio and online in partnership with Motheo FM, Mosupatsela FM, Kovsie FM, Mangaung Municipality, Towers of Hope, Princess Gabo Foundation, Rock Foundation, Bloemshelter, and all our faculties.


News Archive

Nanotechnology breakthrough at UFS
2010-08-19

 Ph.D students, Chantel Swart and Ntsoaki Leeuw


Scientists at the University of the Free State (UFS) made an important breakthrough in the use of nanotechnology in medical and biological research. The UFS team’s research has been accepted for publication by the internationally accredited Canadian Journal of Microbiology.

The UFS study dissected yeast cells exposed to over-used cooking oil by peeling microscopically thin layers off the yeast cells through the use of nanotechnology.

The yeast cells were enlarged thousands of times to study what was going on inside the cells, whilst at the same time establishing the chemical elements the cells are composed of. This was done by making microscopically small surgical incisions into the cell walls.

This groundbreaking research opens up a host of new uses for nanotechnology, as it was the first study ever in which biological cells were surgically manipulated and at the same time elemental analysis performed through nanotechnology. According to Prof. Lodewyk Kock, head of the Division Lipid Biotechnology at the UFS, the study has far reaching implications for biological and medical research.

The research was the result of collaboration between the Department of Microbial, Biochemical and Food Biotechnology, the Department of Physics (under the leadership of Prof. Hendrik Swart) and the Centre for Microscopy (under the leadership of Prof.Pieter van Wyk).

Two Ph.D. students, Chantel Swart and Ntsoaki Leeuw, overseen by professors Kock and Van Wyk, managed to successfully prepare yeast that was exposed to over-used cooking oil (used for deep frying of food) for this first ever method of nanotechnological research.

According to Prof. Kock, a single yeast cell is approximately 5 micrometres long. “A micrometre is one millionth of a metre – in laymen’s terms, even less than the diameter of a single hair – and completely invisible to the human eye.”

Through the use of nanotechnology, the chemical composition of the surface of the yeast cells could be established by making a surgical incision into the surface. The cells could be peeled off in layers of approximately three (3) nanometres at a time to establish the effect of the oil on the yeast cell’s composition. A nanometre is one thousandth of a micrometre.

Each cell was enlarged by between 40 000 and 50 000 times. This was done by using the Department of Physics’ PHI700 Scanning Auger Nanoprobe linked to a Scanning Electron Microscope and Argon-etching. Under the guidance of Prof. Swart, Mss. Swart en Leeuw could dissect the surfaces of yeast cells exposed to over-used cooking oil. 

The study noted wart like outgrowths - some only a few nanometres in diameter – on the cell surfaces. Research concluded that these outgrowths were caused by the oil. The exposure to the oil also drastically hampered the growth of the yeast cells. (See figure 1)  

Researchers worldwide have warned about the over-usage of cooking oil for deep frying of food, as it can be linked to the cause of diseases like cancer. The over-usage of cooking oil in the preparation of food is therefore strictly regulated by laws worldwide.

The UFS-research doesn’t only show that over-used cooking oil is harmful to micro-organisms like yeast, but also suggests how nanotechnology can be used in biological and medical research on, amongst others, cancer cells.

 

Figure 1. Yeast cells exposed to over-used cooking oil. Wart like protuberances/ outgrowths (WP) is clearly visible on the surfaces of the elongated yeast cells. With the use of nanotechnology, it is possible to peel off the warts – some with a diameter of only a few nanometres – in layers only a few nanometres thick. At the same time, the 3D-structure of the warts as well as its chemical composition can be established.  

Media Release
Issued by: Mangaliso Radebe
Assistant Director: Media Liaison
Tel: 051 401 2828
Cell: 078 460 3320
E-mail: radebemt@ufs.ac.za  
18 August 2010
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept