Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
17 July 2020 | Story Nitha Ramnath | Photo iStock
The UFS initiated a new community engagement programme to help communities take charge of their lives.

The University of the Free State (UFS) is launching a new community engagement programme to help communities take charge of their lives during and after the national lockdown caused by the COVID-19 pandemic. 

The E-Community Engagement Programme will run for the duration of the lockdown to ensure that the UFS continues to serve all people. This programme is one of more than 120 community development programmes and projects that the UFS is involved with this year.

Rev Billyboy Ramahlele, Director: Community Engagement, says this strategy is the result of the Institutional Transformation Plan, which seeks to deepen the university’s commitment towards the betterment of our communities by creating sustainable partnerships for development. “This programme is dedicated to assisting communities to take charge of their lives during and after this pandemic and will focus on sustainable livelihoods and family support”, he says.

With these community development programmes and projects, about 3 000 UFS students spend at least 127 000 hours per year engaging in 73 service-learning modules. This excludes the clinical work done by our medical and education students in the community through community-based education and inter-professional learning. The university’s 22 student volunteer associations play an important role in community development projects. Our academics and researchers contribute their intellectual resources through their involvement, teaching, and research in different aspects of community life.

The E-Community Engagement Programme refers to an alternative online/virtual community engagement platform aimed at facilitating continuously negotiated collaborations and partnerships between the UFS and the interest groups that it interacts with, aimed at building and exchanging the knowledge, skills, expertise, and resources required to develop and sustain society. Such alternative engagement stems from adapting physical face-to-face (f2f) community engagement to an e-environment. As a result of the uncertain state of restricted f2f engagement during the lockdown due to the COVID-19 pandemic, the focus of participation, dialogue, engaged learning, and teaching by university staff and students is on citizens actively participating in the development of their own lives and that of their surrounding communities.

Details of the E-Community Engagement Programme will soon be published on the UFS website, and will be presented on radio and online in partnership with Motheo FM, Mosupatsela FM, Kovsie FM, Mangaung Municipality, Towers of Hope, Princess Gabo Foundation, Rock Foundation, Bloemshelter, and all our faculties.


News Archive

What do diamonds, chocolates, bugs and almost 30 Nobel Prizes have in common? Crystallography
2014-10-15

 

Some of the keynote speakers and chairpersons at the third world summit in the International Year of Crystallography (in Africa) were, from the left, front: Profs Abdelmalek Thalal (Morocco), Prosper Kanyankogote (University of Kinshasa, Democratic Republic of the Congo); Habib Bougzala (Tunisia), Santiago Garcia-Granda (IUCr, University Oviedo, Spain), Michele Zema (IYCr 2014, Italy/UK) and Dr Jean-Paul Ngome-Abiaga (UNESCO, Paris, France); back: Dr Thomas Auf der Heyde (Acting Director-general, South African Department of Science and Technology); Dr Petrie Steynberg (SASOL) and Prof André Roodt (UFS, host).

Photo: Marija Zbacnik
The third world summit in the International Year of Crystallography (in Africa) was hosted by Prof André Roodt, Head of the Department of Chemistry and President of the European Crystallographic Association,  at the University of the Free State in Bloemfontein.

A declaration with and appeal to support crystallography and science across Africa, was signed.

When one mentions 'Crystallography', or more simply 'crystals', what comes to mind? Diamonds? Perhaps jewellery in general? When thinking of crystals and Crystallography, you will need to think much bigger. And further – even to Mars and back.

Crystallography refers to the branch of science that is concerned with structure and properties of crystals. The obvious examples would include cut diamonds, gemstones such as amethysts, and ‘simple’ crystals such as selenite and quartz.

But have you thought about the irritating brown scales at the bottom of your kettle? The sand in your shoes? The salt over your lamb chops or the sugar in your coffee? All crystals. From egg shells to glucose, from bugs and insecticides to additives in food – even the compounds in chocolate – all fall under the close scrutiny of Crystallography.

The breakthroughs this field of science has produced have led to almost 30 Nobel Prizes over the years.

Determining the structure of DNA by crystallography was arguably one of the most significant scientific events of the 20th century. Different diseases have been cured or slowed by medicines obtained based on crystallographic studies. These include certain cancers, HIV/Aids, Tuberculosis and Malaria. Biological Crystallography enables the development of anti-viral drugs and vaccines.

This field of science influences our daily lives in virtually immeasurable ways. Here are but a few areas of study and development Crystallography contributes to:

•    LCD displays;
•    cellular smartphones;
•    insects and insecticides;
•    additives and products in foods;
•    improved effectiveness and security of credit cards;
•    new materials to preserve energy;
•    better gasoline with less by-products;
•    identify colour pigments used in paintings from the old masters, indicating if it’s an original or an imitation; and
•    beauty products such as nail polish, sun-block, mascara and eye shadow.

Crystallography is also currently used by the Curiosity Rover to analyse the substances and minerals on Mars.

Crystals and Crystallography form an integrated part of our daily lives – from bones and teeth to medicines and viruses, from chocolates to the blades in airplane turbines. Even down to the humble snowflake.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept