Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
22 July 2020 | Story Andre Damons | Photo Supplied
Dr Champion N Nyoni.

As yet another testament to the great work being done, as well as the dedication, passion, and hard work of staff members in the School of Nursing at the University of the Free State (UFS), a senior lecturer became the first UFS staff member to win the prestigious Sigma Emerging Nurse Researcher/Scholar award – making him only the third African to win this award. 

“I was overwhelmed to be honoured with this award as the third African to have won it in the history of the awards. To me, this is an indication that the quality of our work in the School of Nursing is top-notch and meets international standards, and that our contribution to nursing science and nursing education is outstanding,” says a proud Dr Champion N. Nyoni on his latest achievement. 

Sigma Theta Tau International (Sigma) is a global honour society for nurses that recognises and advances nursing through research and scholarship. Membership for this society includes a minimum of a master’s qualification and nomination from current members based on your contribution and the potential thereof for nursing at a national and global scale. 

The Emerging Nurse Researcher/Scholar Award, with the purpose of recognising nurses whose research and scholarship has impacted the profession and the people it serves, was introduced in 2015.

No easy process 
It is quite a rigorous process to become eligible for the award, explains Dr Nyoni. “One is nominated by peers who are also part of Sigma; these peers must motivate their nomination by providing evidence related to the research and scholarship of the nominee.” 

“In addition to the numerous reference reports from colleagues in the discipline of nursing, additional referrals are sought from colleagues in other professions (in the health sciences) who have worked and engaged with the research of the nominee. This application process is then evaluated for consideration, among others, by a global panel. I never thought that I would win this award, given the nature of the nomination process, and the heavy funding that other nurse researchers globally receive in comparison to Africa,” says Dr Nyoni.

According to a passionate Dr Nyoni, the award will also give him the energy to continue an academic track, especially in nursing and nursing education, with a focus on improving the quality of nursing education, the quality of nursing graduates, impacting the nursing workforce and thereby influencing the quality of health indicators, especially in Africa, where health systems are nurse-driven. 

Dr Nyoni is appreciative of the nurturing environment and brilliant colleagues in the School of Nursing, who are supporting his research career.

Quality nursing education

"We need quality nurses for quality nursing care, and this should be done through quality nursing education. I hope to use this award as part of a motivation strategy for young nurses to be engaged in scholarship and in academia, as there is a great need, especially in sub-Saharan Africa,” concludes Dr Nyoni.

When he was nominated, Dr Nyoni had close to 15 publications in nursing education and close to 40 presentations at local and international conferences. He also had several awards for his research work, including the Best Education Paper: Senior Category at the Faculty of Health Science’s Research Forum in 2019. 

Dr Nyoni is currently a postdoctoral fellow (the first) in the UFS School of Nursing and serves as chairperson on several boards of directors relating to health professions education in the African region, namely AfrIPEN and SAFRI. He is also supervising several master’s and PhD students.
 
• This award will be presented on Thursday at the International Nursing Research Congress that is now taking place online due to COVID-19.

News Archive

Researcher part of project aimed at producing third-generation biofuels from microalgae in Germany
2016-05-09

Description: Novagreen bioreactor  Tags: Novagreen bioreactor

Some of the researchers and technicians among the tubes of the Novagreen bioreactor (Prof Grobbelaar on left)

A researcher from the University of the Free State (UFS), Prof Johan Grobbelaar, was invited to join a group of scientists recently at the Institute for Bio- and Geo-Sciences of the Research Centre Jülich, in Germany, where microalgae are used for lipid (oil) production, and then converted to kerosene for the aviation industry.

The project is probably the first of its kind to address bio-fuel production from microalgae on such a large scale.  

“The potential of algae as a fuel source is undisputed, because it was these photoautotrophic micro-organisms that were fixing sunlight energy into lipids for millions of years, generating the petroleum reserves that modern human civilisation uses today.  However, these reserves are finite, so the challenge is marrying biology with technology to produce economically-competitive fuels without harming the environment and compromising our food security.  The fundamental ability that microalgae have to produce energy-rich biomass from CO2, nutrients, and sunlight through photosynthesis for biofuels, is commonly referred to as the Third-Generation Biofuels (3G),” said Prof Grobbelaar.

The key compounds used for bio-diesel and kerosene production are the lipids and, more particularly, the triacylglyserols commonly referred to as TAGs.  These lipids, once extracted, need to be trans-esterified for biodiesel, while a further “cracking” step is required to produce kerosene.  Microalgae can store energy as lipids and/or carbohydrates. However, for biofuels, microalgae with high TAG contents are required.  A number of such algae have been isolated, and lipid contents of up to 60% have been achieved.

According to Prof Grobbelaar, the challenge is large-scale, high-volume production, since it is easy to manipulate growth conditions in the laboratory for experimental purposes.  

The AUFWIND project (AUFWIND, a German term for up-current, or new impetus) in Germany consists of three different commercially-available photobioreactor types, which are being compared for lipid production.

Description: Lipid rich chlorella Tags: Lipid rich chlorella

Manipulated Chlorella with high lipid contents (yellow) in the Novagreen bioreactor

The photobioreactors each occupies 500 m2 of land surface area, are situated next to one another, and can be monitored continuously.  The three systems are from Novagreen, IGV, and Phytolutions.  The Novagreen photobioreactor is housed in a glass house, and consist of interconnected vertical plastic tubes roughly 150 mm in diameter. The Phytolutions system is outdoors, and consists of curtains of vertical plastic tubes with a diameter of about 90 mm.  The most ambitious photobioreactor is from IGV, and consists of horizontally-layered nets housed in a plastic growth hall, where the algae are sprayed over the nets, and allowed to grow while dripping from one net to the next.

Prof Grobbelaar’s main task was to manipulate growth conditions in such a way that the microalgae converted their stored energy into lipids, and to establish protocols to run the various photobioreactors. This was accomplished in just over two months of intensive experimentation, and included modifications to the designs of the photobioreactors, the microalgal strain selection, and the replacement of the nutrient broth with a so-called balanced one.

Prof Grobbelaar has no illusions regarding the economic feasibility of the project.  However, with continued research, optimisation, and utilisation of waste resources, it is highly likely that the first long-haul flights using microalgal-derived kerosene will be possible in the not-too-distant future.

Prof Grobbelaar from the Department of Plant Sciences, although partly retired, still serves on the editorial boards of several journals. He is also involved with the examining of PhDs, many of them from abroad.  In addition, he assisted the Technology Innovation Agency of South Africa in the formulation of an algae-biotechnology and training centre.  “The chances are good that such a centre will be established in Upington, in the Northern Cape,” Prof Grobbelaar said.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept