Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
22 July 2020 | Story Andre Damons | Photo Supplied
Dr Champion N Nyoni.

As yet another testament to the great work being done, as well as the dedication, passion, and hard work of staff members in the School of Nursing at the University of the Free State (UFS), a senior lecturer became the first UFS staff member to win the prestigious Sigma Emerging Nurse Researcher/Scholar award – making him only the third African to win this award. 

“I was overwhelmed to be honoured with this award as the third African to have won it in the history of the awards. To me, this is an indication that the quality of our work in the School of Nursing is top-notch and meets international standards, and that our contribution to nursing science and nursing education is outstanding,” says a proud Dr Champion N. Nyoni on his latest achievement. 

Sigma Theta Tau International (Sigma) is a global honour society for nurses that recognises and advances nursing through research and scholarship. Membership for this society includes a minimum of a master’s qualification and nomination from current members based on your contribution and the potential thereof for nursing at a national and global scale. 

The Emerging Nurse Researcher/Scholar Award, with the purpose of recognising nurses whose research and scholarship has impacted the profession and the people it serves, was introduced in 2015.

No easy process 
It is quite a rigorous process to become eligible for the award, explains Dr Nyoni. “One is nominated by peers who are also part of Sigma; these peers must motivate their nomination by providing evidence related to the research and scholarship of the nominee.” 

“In addition to the numerous reference reports from colleagues in the discipline of nursing, additional referrals are sought from colleagues in other professions (in the health sciences) who have worked and engaged with the research of the nominee. This application process is then evaluated for consideration, among others, by a global panel. I never thought that I would win this award, given the nature of the nomination process, and the heavy funding that other nurse researchers globally receive in comparison to Africa,” says Dr Nyoni.

According to a passionate Dr Nyoni, the award will also give him the energy to continue an academic track, especially in nursing and nursing education, with a focus on improving the quality of nursing education, the quality of nursing graduates, impacting the nursing workforce and thereby influencing the quality of health indicators, especially in Africa, where health systems are nurse-driven. 

Dr Nyoni is appreciative of the nurturing environment and brilliant colleagues in the School of Nursing, who are supporting his research career.

Quality nursing education

"We need quality nurses for quality nursing care, and this should be done through quality nursing education. I hope to use this award as part of a motivation strategy for young nurses to be engaged in scholarship and in academia, as there is a great need, especially in sub-Saharan Africa,” concludes Dr Nyoni.

When he was nominated, Dr Nyoni had close to 15 publications in nursing education and close to 40 presentations at local and international conferences. He also had several awards for his research work, including the Best Education Paper: Senior Category at the Faculty of Health Science’s Research Forum in 2019. 

Dr Nyoni is currently a postdoctoral fellow (the first) in the UFS School of Nursing and serves as chairperson on several boards of directors relating to health professions education in the African region, namely AfrIPEN and SAFRI. He is also supervising several master’s and PhD students.
 
• This award will be presented on Thursday at the International Nursing Research Congress that is now taking place online due to COVID-19.

News Archive

Research eradicates bacteria from avocado facility
2017-01-17

 Description: Listeria monocytogenes Tags: Listeria monocytogenes

Listeria monocytogenes as seen under an electron
microscope. The photo was taken with a transmission
electron microscope at the microscopy unit of the UFS.
Bacteriophages (lollipop-like structures) can be seen
next to the bacterial cells.
Photo: Supplied

“The aim of my project was to identify and characterise the contamination problem in an avocado-processing facility and then to find a solution,” said Dr Amy Strydom, postdoctoral fellow in the Department of Microbial Biochemical and Food Biotechnology at the University of the Free State (UFS).

Her PhD, “Control of Listeria monocytogenes in an Avocado-processing Facility”, aimed to identify and characterise the contamination problem in a facility where avocados were processed into guacamole. Dr Strydom completed her MSc in food science in 2009 at Stellenbosch University and this was the catalyst for her starting her PhD in microbiology in 2012 at the UFS. The research was conducted over a period of four years and she graduated in 2016. The research project was funded by the National Research Foundation.

The opportunity to work closely with the food industry further motivated Dr Strydom to conduct her research. The research has made a significant contribution to a food producer (avocado facility) that will sell products that are not contaminated with any pathogens. The public will then buy food that is safe for human consumption.


What is Listeria monocytogenes?

Listeria monocytogenes is a food-borne pathogenic bacterium. When a food product is contaminated with L. monocytogenes, it will not be altered in ways that are obvious to the consumer, such as taste and smell. When ingested, however, it can cause a wide range of illnesses in people with impaired immune systems. “Risk groups include newborn babies, the elderly, and people suffering from diseases that weaken their immune systems,” Dr Strydom said. The processing adjustments based on her findings resulted in decreased numbers of Listeria in the facility.

The bacteria can also survive and grow at refrigeration temperatures, making them dangerous food pathogens, organisms which can cause illnesses [in humans]. Dr Strydom worked closely with the facility and developed an in-house monitoring system by means of which the facility could test their products and the processing environment. She also evaluated bacteriophages as a biological control agent in the processing facility. Bacteriophages are viruses that can only infect specific strains of bacteria. Despite bacteriophage products specifically intended for the use of controlling L. monocytogenes being commercially available in the food industry, Dr Strydom found that only 26% of the L. monocytogenes population in the facility was destroyed by the ListexP100TM product. “I concluded that the genetic diversity of the bacteria in the facility was too high and that the bacteriophages could not be used as a control measure. However, there is much we do not understand about bacteriophages, and with a few adjustments, we might be able to use them in the food industry.”

Microbiological and molecular characterisation of L. monocytogenes

The bacteria were isolated and purified using basic microbiological culturing. Characterisation was done based on specific genes present in the bacterial genome. “I amplified these genes with polymerase chain reaction (PCR), using various primers targeting these specific genes,” Dr Strydom said. Some amplification results were analysed with a subsequent restriction digestion where the genes were cut in specific areas with enzymes to create fragments. The lengths of these fragments can be used to differentiate between strains. “I also compared the whole genomes of some of the bacterial strains.” The bacteriophages were then isolated from waste water samples at the facility using the isolated bacterial strains. “However, I was not able to isolate a bacteriophage that could infect the bacteria in the facility.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept