Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
21 July 2020 | Story Nitha Ramnath | Photo istock

Date: 28 July 2020
Time: 14:00 – 15:30

Gender inequalities domestic violence and gender-based violence (GBV) are global concerns, and have been exacerbated by the impact of Covid-19 as women take on more child and care work responsibilities.  Jobs lost in service sectors often affect women most, large numbers of frontline health workers and teachers are women, and lockdowns increase domestic violence. Thus President Cyril Ramaphosa recently said in a televised address that more than 21 women and children have been murdered in South Africa within just a few weeks in what he referred to as “another pandemic raging in our country.” He said this “violence being unleashed on women and children with a brutality that defies comprehension, is no less than a war being waged against the women and children of our country”.

As the World Economic Forum points out, regardless of where one looks, it is women who bear most of the responsibility for holding societies together, be it at home, in health care, at school, or in caring for the elderly. In many countries, women perform these tasks without pay. 

Now, the Covid-19 pandemic is compounding existing gender inequalities, and increasing risks of gender-based violence. Gender inequality, layered along with the effects of the pandemic, lockdowns and the economic downturn, could leave a deep and lasting impact on the lives and opportunities of women and girls.

Given, then, that the COVID-19 crisis affects women and girls in different ways from men and boys, measures to resolve it must take gender into account, and the protection and promotion of the rights of women and girls prioritized. 
To take up these issues of gender inequalities and gender-based violence, two renowned gender research experts will take part in our webinar. The webinar will be chaired by Professor Melanie Walker of the University of the Free State.  The presenters are: Professor Pumla Gqola, Professor of Women and Gender Studies at Nelson Mandela University and author of Rape: A South African Nightmare. Lisa Vetten has worked in the field of violence against women for over two decades as a counsellor, para-legal, trainer and researcher. She is currently an honorary research associate at the Wits Institute for Social and Economic Research (WiSER).

Join us from 14:00 to 15:30 on 28 July. 

RSVP to Sibongile Mlotya at MlotyaS@ufs.ac.za no later than 26 July, upon which you will receive a Business for Skype meeting invite.

News Archive

New world-class Chemistry facilities at UFS
2011-11-22

 

A world-class research centre was introduced on Friday 18 November 2011 when the new Chemistry building on the Bloemfontein Campus of the University of the Free State (UFS) was officially opened.
The upgrading of the building, which has taken place over a period of five years, is the UFS’s largest single financial investment in a long time. The building itself has been renovated at a cost of R60 million and, together with the new equipment acquired, the total investment exceeds R110 million. The university has provided the major part of this, with valuable contributions from Sasol and the South African Research Foundation (NRF), which each contributed more than R20 million for different facets and projects.
The senior management of Sasol, NECSA (The South African Nuclear Energy Corporation), PETLabs Pharmaceuticals, and visitors from Sweden attended the opening.

Prof. Andreas Roodt, Head of the Department of Chemistry, states the department’s specialist research areas includes X-ray crystallography, electrochemistry, synthesis of new molecules, the development of new methods to determine rare elements, water purification, as well as the measurement of energy and temperatures responsible for phase changes in molecules, the development of agents to detect cancer and other defects in the body, and many more.

“We have top expertise in various fields, with some of the best equipment and currently competing with the best laboratories in the world. We have collaborative agreements with more than twenty national and international chemistry research groups of note.

“Currently we are providing inputs about technical aspects of the acid mine water in Johannesburg and vicinity, as well as the fracking in the Karoo in order to release shale gas.”

New equipment installed during the upgrading action comprises:

  • X-ray diffractometers (R5 million) for crystal research. Crystals with unknown compounds are researched on an X-ray diffractometer, which determines the distances in angstroms (1 angstrom is a ten-billionth of a metre) and corners between atoms, as well as the arrangement of the atoms in the crystal, and the precise composition of the molecules in the crystal.
  • Differential scanning calorimeter (DSC) for thermographic analyses (R4 million). Heat transfer and the accompanying changes, as in volcanoes, and catalytic reactions for new motor petrol are researched. Temperature changes, coupled with the phase switchover of fluid crystals (liquid crystals -watches, TV screens) of solid matter to fluids, are measured.
  • Nuclear-magnetic resonance (NMR: Bruker 600 MHz; R12 million, one of the most advanced systems in Africa). A NMR apparatus is closely linked with the apparatus for magnetic resonance imaging, which is commonly used in hospitals. NMR is also used to determine the structure of unknown compounds, as well as the purity of the sample. Important structural characteristics of molecules can also be identified, which is extremely important if this molecule is to be used as medication, as well as to predict any possible side effects of it.
  • High-performance Computing Centre (HPC, R5 million). The UFS’ HPC consists of approximately 900 computer cores (equal to 900 ordinary personal computers) encapsulated in one compact system handling calculations at a billion-datapoint level It is used to calculate the geometry and spatial arrangements, energy and characteristics of molecules. The bigger the molecule that is worked with, the more powerful the computers must be doing the calculations. Computing chemistry is particularly useful to calculate molecular characteristics in the absence of X-ray crystallographic or other structural information. Some reactions are so quick that the intermediary products cannot be characterised and computing chemistry is of invaluable value in that case.
  • Catalytic and high-pressure equipment (R6 million; some of the most advanced equipment in the world). The pressures reached (in comparison with those in car tyres) are in gases (100 times bigger) and in fluids (1 500 times) in order to study very special reactions. The research is undertaken, some of which are in collaboration with Sasol, to develop new petrol and petrol additives and add value to local chemicals.
  • Reaction speed equipment (Kinetics: R5 million; some of the most advanced equipment in the world). The tempo and reactions can be studied in the ultraviolet, visible and infrared area at millisecond level; if combined with the NMR, up to a microsecond level (one millionth of a second.

Typical reactions are, for example, the human respiratory system, the absorption of agents in the brain, decomposition of nanomaterials and protein, acid and basis polymerisation reactions (shaping of water-bottle plastic) and many more.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept