Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
21 July 2020 | Story Nitha Ramnath | Photo istock

Date: 28 July 2020
Time: 14:00 – 15:30

Gender inequalities domestic violence and gender-based violence (GBV) are global concerns, and have been exacerbated by the impact of Covid-19 as women take on more child and care work responsibilities.  Jobs lost in service sectors often affect women most, large numbers of frontline health workers and teachers are women, and lockdowns increase domestic violence. Thus President Cyril Ramaphosa recently said in a televised address that more than 21 women and children have been murdered in South Africa within just a few weeks in what he referred to as “another pandemic raging in our country.” He said this “violence being unleashed on women and children with a brutality that defies comprehension, is no less than a war being waged against the women and children of our country”.

As the World Economic Forum points out, regardless of where one looks, it is women who bear most of the responsibility for holding societies together, be it at home, in health care, at school, or in caring for the elderly. In many countries, women perform these tasks without pay. 

Now, the Covid-19 pandemic is compounding existing gender inequalities, and increasing risks of gender-based violence. Gender inequality, layered along with the effects of the pandemic, lockdowns and the economic downturn, could leave a deep and lasting impact on the lives and opportunities of women and girls.

Given, then, that the COVID-19 crisis affects women and girls in different ways from men and boys, measures to resolve it must take gender into account, and the protection and promotion of the rights of women and girls prioritized. 
To take up these issues of gender inequalities and gender-based violence, two renowned gender research experts will take part in our webinar. The webinar will be chaired by Professor Melanie Walker of the University of the Free State.  The presenters are: Professor Pumla Gqola, Professor of Women and Gender Studies at Nelson Mandela University and author of Rape: A South African Nightmare. Lisa Vetten has worked in the field of violence against women for over two decades as a counsellor, para-legal, trainer and researcher. She is currently an honorary research associate at the Wits Institute for Social and Economic Research (WiSER).

Join us from 14:00 to 15:30 on 28 July. 

RSVP to Sibongile Mlotya at MlotyaS@ufs.ac.za no later than 26 July, upon which you will receive a Business for Skype meeting invite.

News Archive

Link between champagne bubbles and the UFS?
2012-11-16

Prof. Lodewyk Kock with an example of a front page of the publication FEMS Yeast Research, as adapted by F. Belliard, FEMS Central Office.
Photo: Leatitia Pienaar
15 November 2012

What is the link between the bubbles in champagne and breakthrough research being done at the Mayo Clinic in America? Nano research being done at our university.

Prof. Lodewyk Kock of Biotechnology says a human being consists of millions of minute cells that are invisible to the eye. The nano technology team at the UFS have developed a technique that allows researchers to look into such a cell, as well as other microorganisms. In this way, they can get an idea of what the cell’s “insides” look like.

The UFS team – consisting of Profs. Kock, Hendrik Swart (Physics), Pieter van Wyk (Centre for Microscopy), as well as Dr Chantel Swart (Biotechnology), Dr Carlien Pohl (Biotechnology) and Liza Coetsee (Physics) – were amazed to see that the inside of cells consist of a maze of small tunnels or blisters. Each tunnel is about 100 and more nanometres in diameter – about one ten thousandth of a millimetre – that weaves through the cells in a maze.

It was also found that these tunnels are the “lungs” of the cells. Academics doing research on yeast have had to sit up and take notice of the research being done at the UFS – to the extent that these “lungs” will appear on the front page of the highly acclaimed FEMS Yeast Research for all of 2013.

The Mayo Clinic, in particular, now wants to work with the UFS to study cancer cells in more detail in order to fight this disease, says Prof. Kock. The National Cancer Institute of America has also shown interest. This new nano technology for biology can assist in the study and development of nano medicine that can be used in the treatment of cancer and other life threatening diseases. Nano medicine uses nano metal participles that are up to one billionth of a metre in size.

Prof. Kock says laboratory tests indicate that nano medicine can improve the efficacy of anti-cancer medicine, which makes the treatment less toxic. “According to the Mayo Clinic team, nano particles are considered as a gold cartridge which is being fired directly at a cancer tumour. This is compared to fine shot that spreads through the body and also attacks healthy cells.”

“This accuracy implies that the chemotherapy dose can be lowered with fewer side effects. The Mayo Clinic found that one-tenth of the normal dosage is more effective against pancreas cancer in this way than the full dosage with a linkage to nano particles. According to the clinic, this nano medicine could also delay the spread of cancer,” says Prof. Kock.

The nano particles are used as messengers that convey anti-cancer treatment to cancer cells, where it then selectively kills the cancer cells. The transport and transfer of these medicines with regard to gold nano particles can be traced with the UFS’s nano technology to collect more information, especially where it works on the cell.

“With the new nano technology of the UFS, it is possible to do nano surgery on the cells by slicing the cells in nanometre thin slices while the working of the nano medicine is studied. In this way, it can be established if the nano medicine penetrates the cells or if it is only associated with the tiny tunnels,” says Prof. Kock.

And in champagne the small “lungs” are responsible for the bubbles. The same applies to beer and with this discovery a whole new reach field opens for scientists.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept