Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
31 July 2020 | Story Andre Damons | Photo Supplied
Prof Felicity Burt and Prof Paul Grobler from the UFS.

Three scientists from the University of the Free State (UFS), together with authors from other institutions, are part of an international COVID-19 study published in an international peer-reviewed scientific journal recently. 

Prof Paul Grobler, Academic Head of Department: Genetics; Prof Felicity Burt, researcher from the Division of Virology, Faculty of Health Sciences and the NHLS, and SARChI (South African Research Chairs Initiative) Research Chair in vector-borne and zoonotic diseases; as well as Prof Trudy Turner from the University of Wisconsin-Milwauwkee, but also an affiliated professor in the Department of Genetics at the UFS, are co-authors of the paper that appeared in Plos One. The study is titled: ACE2 and TMPRSS2 variation in savanna monkeys (Chlorocebus spp.): Potential risk for zoonotic/anthroponotic transmission of SARS-CoV-2 and a potential model for functional studies.

 The paper follows an initiative of Prof Chris Schmitt at Boston University with researchers affiliated to the University of California, Los Angeles, Rutgers University, the Polish Academy of Sciences, the Ministry of Health of the Russian Federation, the University of Antwerp, the Wake Forest School of Medicine, and the University of Wisconsin-Milwaukee. The team used the opportunity presented by previously sequenced genomes to screen for variation in the genes associated with susceptibility to infection with SARS-CoV-2.

Concerns about animal welfare and conservation issues

Prof Grobler, who has been studying vervet monkeys from a conservation perspective for two decades, says considering the impact of COVID-19 on the country, he feels that any aspect that might potentially help to understand the progression and transmission of the disease, as well as unexpected risks – however small – should be investigated. 
“Since wildlife management is my field, I am of course also concerned about the potential animal welfare and conservation issues involved.  It should, however, be emphasised that while SARS-CoV-2 infection in vervet monkeys has now been shown to be genetically possible, there is no proof of it actually happening in the wild yet.” 

“I am sure that much work on COVID-19 and vervets will follow internationally, but this is the first study to describe variation at the genes linked to susceptibility,” says Prof Grobler. 

Because of his previous work with vervet monkeys in South Africa and further afield, Prof Grobler was invited by Prof Schmitt to contribute to the manuscript.

“I made some suggestions from a conservation perspective, based on my interpretations and also recent international work that have shown that many primate species may be at risk for SARS-CoV-2 infection and are potentially vulnerable to COVID-19. I also felt that some aspects of the paper would be greatly improved with input from a South African expert in zoonotic disease to add to the genetic and conservation perspectives, and I therefore requested that Prof Burt also be approached.”

Potential for non-human primates infection

Prof Burt, whose research interests and expertise include the investigation of viruses of zoonotic origin, and/or those transmitted by mosquitoes and ticks that impact human and/or animal well-being – using a One Health approach – says the study was a collaborative effort between scientists with expertise in a wide range of disciplines, including biological anthropology, genetics, primatology, molecular biology, and virology.

“The concept of One Health encourages collaboration between multiple disciplines, promoting the concept that the interaction between humans, animals, and the environment has an impact on the health of people, animals, plants, and the environment. The outcome is an exciting study that incorporates knowledge from each discipline to investigate the potential susceptibility of non-human primate populations to SARS-CoV-2.” 

“The research suggests that there is potential for novel SARS-CoV-2 to infect non-human primates, and that surveillance of non-human primates living in close proximity to human populations is not only warranted, but is actually important for defining risk to both humans and animals,” says Prof Burt. 

According to her, the majority of recently emerged viruses, including SARS-CoV-2, were zoonotic in origin. The close proximity of humans and wild non-human primates provides potential for cross-species transmission of pathogens; for some endangered species, this could have devastating effects. Similarly, identifying if non-human primates have the potential to act as intermediate hosts for pathogens with significant public health implications, would be important for understanding zoonotic transmission.

“Novel viruses are continually emerging, and we need to be prepared. A multidisciplinary approach to understanding interactions at the wildlife-human interface will be essential for the prevention of future outbreaks.”

News Archive

Researchers focus on parrots, poultry and phage therapy
2014-10-10

Photo: en.wikipedia

Veterinary biotechnology focuses on microbial and molecular biological approaches to veterinary illnesses. The group working on veterinary biotechnology research at the University of the Free State (UFS) consists of two academic staff members, Prof Rob Bragg and Dr Charlotte Boucher, two post-doctoral fellows, Drs Chris Theron and Arina Hitzeroth, five PhD and three honours students.

The group has three research focus areas.

Dr Boucher says, “Our main focus area is infectious coryza in poultry, caused by the bacterium Avibacterium paragalliarum. The aim is the control of the disease, mainly through improvement of vaccines, understanding the immune response and improved biosecurity. A key objective is improving methods for serotyping; studying of selected surface antigens and investigating the influence recently discovered bacteriophages might have on virulence. We have co-operative projects with research groups in China, India and Israel.

“The second focus area is an expression system co-developed with the National Institute for Agronomic Research (INRA), France. The flagship project is the expression of the coat protein gene of the beak and feather disease virus, a disease affecting parrots, currently threatening the endangered Cape parrot. This system has led to the development of serological tests, currently under patenting. The application of this system has been extended to human-related diseases, with two interdisciplinary projects underway, co-working with Profs Muriel Meiring and Felicity Burt. Prof Meiring is working on diseases causing bleeding disorders, such as blood-clotting impairment, while Prof Burt is working on viral infections causing haemorrhagic (bleeding) disorders.

“We are also researching disease control in a post-antibiotic era, investigating the potential of phage-therapy by targeting and destroying pathogenic islands within a host, with reduced side-effects on the host itself.

“We have smaller projects, including an interdisciplinary project with Zoology, looking at the protein profile of amphibian (frog) secretions with the focus on antimicrobial activity, as these secretions assist with protecting amphibian skin against infections.”  


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept