Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
31 July 2020 | Story Andre Damons | Photo Supplied
Prof Felicity Burt and Prof Paul Grobler from the UFS.

Three scientists from the University of the Free State (UFS), together with authors from other institutions, are part of an international COVID-19 study published in an international peer-reviewed scientific journal recently. 

Prof Paul Grobler, Academic Head of Department: Genetics; Prof Felicity Burt, researcher from the Division of Virology, Faculty of Health Sciences and the NHLS, and SARChI (South African Research Chairs Initiative) Research Chair in vector-borne and zoonotic diseases; as well as Prof Trudy Turner from the University of Wisconsin-Milwauwkee, but also an affiliated professor in the Department of Genetics at the UFS, are co-authors of the paper that appeared in Plos One. The study is titled: ACE2 and TMPRSS2 variation in savanna monkeys (Chlorocebus spp.): Potential risk for zoonotic/anthroponotic transmission of SARS-CoV-2 and a potential model for functional studies.

 The paper follows an initiative of Prof Chris Schmitt at Boston University with researchers affiliated to the University of California, Los Angeles, Rutgers University, the Polish Academy of Sciences, the Ministry of Health of the Russian Federation, the University of Antwerp, the Wake Forest School of Medicine, and the University of Wisconsin-Milwaukee. The team used the opportunity presented by previously sequenced genomes to screen for variation in the genes associated with susceptibility to infection with SARS-CoV-2.

Concerns about animal welfare and conservation issues

Prof Grobler, who has been studying vervet monkeys from a conservation perspective for two decades, says considering the impact of COVID-19 on the country, he feels that any aspect that might potentially help to understand the progression and transmission of the disease, as well as unexpected risks – however small – should be investigated. 
“Since wildlife management is my field, I am of course also concerned about the potential animal welfare and conservation issues involved.  It should, however, be emphasised that while SARS-CoV-2 infection in vervet monkeys has now been shown to be genetically possible, there is no proof of it actually happening in the wild yet.” 

“I am sure that much work on COVID-19 and vervets will follow internationally, but this is the first study to describe variation at the genes linked to susceptibility,” says Prof Grobler. 

Because of his previous work with vervet monkeys in South Africa and further afield, Prof Grobler was invited by Prof Schmitt to contribute to the manuscript.

“I made some suggestions from a conservation perspective, based on my interpretations and also recent international work that have shown that many primate species may be at risk for SARS-CoV-2 infection and are potentially vulnerable to COVID-19. I also felt that some aspects of the paper would be greatly improved with input from a South African expert in zoonotic disease to add to the genetic and conservation perspectives, and I therefore requested that Prof Burt also be approached.”

Potential for non-human primates infection

Prof Burt, whose research interests and expertise include the investigation of viruses of zoonotic origin, and/or those transmitted by mosquitoes and ticks that impact human and/or animal well-being – using a One Health approach – says the study was a collaborative effort between scientists with expertise in a wide range of disciplines, including biological anthropology, genetics, primatology, molecular biology, and virology.

“The concept of One Health encourages collaboration between multiple disciplines, promoting the concept that the interaction between humans, animals, and the environment has an impact on the health of people, animals, plants, and the environment. The outcome is an exciting study that incorporates knowledge from each discipline to investigate the potential susceptibility of non-human primate populations to SARS-CoV-2.” 

“The research suggests that there is potential for novel SARS-CoV-2 to infect non-human primates, and that surveillance of non-human primates living in close proximity to human populations is not only warranted, but is actually important for defining risk to both humans and animals,” says Prof Burt. 

According to her, the majority of recently emerged viruses, including SARS-CoV-2, were zoonotic in origin. The close proximity of humans and wild non-human primates provides potential for cross-species transmission of pathogens; for some endangered species, this could have devastating effects. Similarly, identifying if non-human primates have the potential to act as intermediate hosts for pathogens with significant public health implications, would be important for understanding zoonotic transmission.

“Novel viruses are continually emerging, and we need to be prepared. A multidisciplinary approach to understanding interactions at the wildlife-human interface will be essential for the prevention of future outbreaks.”

News Archive

Plant scientists address wheat rust diseases at SASPP congress
2015-02-02

Pictured from the left are: Prof Zakkie Pretorius, Dr Botma Visser and Howard Castelyn.
Photo: Supplied

In his research, Dr Botma Visser, researcher in the Department of Plant Sciences at the University of the Free State, highlighted the population dynamics of the stem rust fungus (Puccinia graminis f. sp. tritici) in Southern Africa. In recent years, two foreign stem rust races were introduced to South Africa, and a local virulence adaptation occurred in a third.

All of these races form part of the Ug99 group, a highly virulent collection of rust races endangering wheat production in many parts of the world. Despite the fact that half of the members of the Ug99 race group is prevalent in South Africa, Dr Visser’s work has clearly shown that Ug99 did not have its origin here. This emphasised the need to include neighbouring countries in the annual stem rust surveys, to proactively identify new races that could threaten local wheat production. In his research, Dr Visser also mentioned the way in which he has optimised modern molecular tools to accurately detect Ug99 isolates.

Dr Visser is one of three scientists from the Department of Plant Sciences that addressed delegates attending the biennial congress of the Southern African Society for Plant Pathology (SASPP) on the Bloemfontein Campus earlier this month on progress regarding research on wheat rust diseases conducted at the UFS.

Howard Castelyn, a PhD student in Plant Sciences, presented his research on quantifying fungal growth of the stem rust pathogen in wheat varieties displaying genetic resistance. This resistance, which is best expressed in adult plants, has the potential to remain durable in the presence of new rust variants. His presentation at the congress focused on optimising microscopic and molecular techniques to track fungal development in stem tissues of adult plants. These results now allow scientists to link rust infection levels and cellular responses with particular resistance genes expressed by the wheat plant, and contributing to the understanding and exploitation of durable resistance.

Prof Zakkie Pretorius presented his research, explaining how new genetic diversity for resistance to the stripe (yellow) rust fungus (Puccinia striiformis) is discovered, analysed and applied in South Africa. This research, conducted in collaboration with Dr Renée Prins and her team at CenGen, is unravelling the genetic basis of stripe rust resistance in a promising wheat line identified by Dr Willem Boshoff, a plant breeder at Pannar. The line and DNA markers to track the resistance genes will soon be introduced to South African wheat breeding programmes.

The rust research programme at the UFS contributes significantly to the successful control of these important crop diseases.

In addition to the contributions by the UFS, rust fungi featured prominently at the SASPP, with first reports of new diseases on sugar cane and Acacia and Eucalyptus trees in South Africa. A case study of the use of a rust fungus as a biological control agent for invasive plant species in the Western Cape, was also presented.

 

For more information or enquiries contact news@ufs.ac.za .

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept