Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
10 June 2020 | Story Leonie Bolleurs | Photo Supplied
Dr Ehlers was appointed to serve on the National Forensic Oversight and Ethics Board of 10 members for a second term, based on her knowledge in the field of forensic sciences.

Dr Karen Ehlers from the Department of Genetics at the University of the Free State (UFS) was elected as a member of the National Forensic Oversight and Ethics Board (NFOEB) for a second term.

Dr Ehlers has been appointed to the board of 10 members based on her knowledge in the field of forensic sciences. She is currently conducting research focusing on the forensic application of Y-STR markers, the statistical analysis of DNA profiles, and touch DNA.

Making valuable contributions
Her expertise in the field of forensic genetics assists the board – which also handles complaints about alleged violations relating to the abuse of DNA samples and forensic DNA profiles – to oversee the operations of the Forensic Science Laboratory and the National Forensic DNA Database (NFDD). 

“The knowledge I gained from my current research at the UFS has enabled me to make valuable contributions to the board and its recommendations to the Minister of Police,” says Dr Ehlers. 

In her first term as member of the Board – following regular tracking and analysis of reports, the Board noted an increase in the number of outstanding forensic investigative leads – (hits on the National Forensic DNA Database) that were not followed up.

“After we made enquiries, it was determined that the provincial task teams that were to follow up on the leads, were ad hoc structures that lacked the necessary resources. The Board addressed this shortfall by engaging with various stakeholders and helping to establish permanent structures, called Forensic Investigative Units, with dedicated resources – both human and material – to effectively follow up on all forensic DNA investigative leads. The finalised Regulations were published for comment in the Government Gazette on 27 March 2020,” says Dr Ehlers.

Lowering SA crime rate
While serving on this board, she is ensuring that South Africa has a functioning DNA database that contributes to lowering the crime rate in the country. “As a member of the board, I hope to add value to its functioning. I feel that in the future, science will play an even bigger role in crime prevention, detection, and the solving of crimes,” she states.

Dr Ehlers is Programme Director of the Forensic Sciences Programme in the Department of Genetics. She teaches the Crime Scene Management module to second-year students and supervises seven honours, five MSc, and three PhD students. 

Besides her appointment as member of the NFOEB, she values the work she is doing with her students. “The highlight of my career was when my first group of BScHons students in Forensic Genetics graduated and were shortly thereafter appointed by the Forensic Sciences Laboratory as DNA analysts,” she says. 

News Archive

UFS physicists publish in prestigious Nature journal
2017-10-16

Description: Boyden Observatory gravitational wave event Tags: Boyden Observatory, gravitational wave event, Dr Brian van Soelen, Hélène Szegedi, multi-wavelength astronomy 
Hélène Szegedi and Dr Brian van Soelen are scientists in the
Department of Physics at the University of the Free State.

Photo: Charl Devenish

In August 2017, the Boyden Observatory in Bloemfontein played a major role in obtaining optical observations of one of the biggest discoveries ever made in astrophysics: the detection of an electromagnetic counterpart to a gravitational wave event.
 
An article reporting on this discovery will appear in the prestigious science journal, Nature, in October 2017. Co-authors of the article, Dr Brian van Soelen and Hélène Szegedi, are from the Department of Physics at the University of the Free State (UFS). Both Dr Van Soelen and Szegedi are researching multi-wavelength astronomy.
 
Discovery is the beginning of a new epoch in astronomy
 
Dr van Soelen said: “These observations and this discovery are the beginning of a new epoch in astronomy. We are now able to not only undertake multi-wavelength observations over the whole electromagnetic spectrum (radio up to gamma-rays) but have now been able to observe the same source in both electromagnetic and gravitational waves.”
 
Until recently it was only possible to observe the universe using light obtained from astronomical sources. This all changed in February 2016 when LIGO (Laser Interferometer Gravitational-Wave Observatory) stated that for the first time they had detected gravitational waves on 14 September 2015 from the merger of two black holes. Since then, LIGO has announced the detection of two more such mergers. A fourth was just reported (27 September 2017), which was the first detected by both LIGO and Virgo. However, despite the huge amount of energy released in these processes, none of this is detectable as radiation in any part of the electromagnetic spectrum. Since the first LIGO detection astronomers have been searching for possible electromagnetic counterparts to gravitational wave detections. 
 
Large international collaboration of astronomers rushed to observe source
 
On 17 August 2017 LIGO and Virgo detected the first ever gravitational waves resulting from the merger of two neutron stars. Neutron star mergers produce massive explosions called kilonovae which will produce a specific electromagnetic signature. After the detection of the gravitational wave, telescopes around the world started searching for the optical counterpart, and it was discovered to be located in an elliptical galaxy, NGC4993, 130 million light years away. A large international collaboration of astronomers, including Dr Van Soelen and Szegedi, rushed to observe this source.
 
At the Boyden Observatory, Dr Van Soelen and Szegedi used the Boyden 1.5-m optical telescope to observe the source in the early evening, from 18 to 21 August. The observations obtained at Boyden Observatory, combined with observations from telescopes in Chile and Hawaii, confirmed that this was the first-ever detection of an electromagnetic counterpart to a gravitational wave event. Combined with the detection of gamma-rays with the Fermi-LAT telescope, this also confirms that neutron star mergers are responsible for short gamma-ray bursts.  
 
The results from these optical observations are reported in A kilonova as the electromagnetic counterpart to a gravitational-wave source published in Nature in October 2017.
 
“Our paper is one of a few that will be submitted by different groups that will report on this discovery, including a large LIGO-Virgo paper summarising all observations. The main results from our paper were obtained through the New Technology Telescope, the GROND system, and the Pan-STARRS system. The Boyden observations helped to obtain extra observations during the first 72 hours which showed that the light of the source decreased much quicker than was expected for supernova, classifying this source as a kilonova,” Dr Van Soelen said.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept