Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
10 June 2020 | Story Leonie Bolleurs | Photo Supplied
Dr Ehlers was appointed to serve on the National Forensic Oversight and Ethics Board of 10 members for a second term, based on her knowledge in the field of forensic sciences.

Dr Karen Ehlers from the Department of Genetics at the University of the Free State (UFS) was elected as a member of the National Forensic Oversight and Ethics Board (NFOEB) for a second term.

Dr Ehlers has been appointed to the board of 10 members based on her knowledge in the field of forensic sciences. She is currently conducting research focusing on the forensic application of Y-STR markers, the statistical analysis of DNA profiles, and touch DNA.

Making valuable contributions
Her expertise in the field of forensic genetics assists the board – which also handles complaints about alleged violations relating to the abuse of DNA samples and forensic DNA profiles – to oversee the operations of the Forensic Science Laboratory and the National Forensic DNA Database (NFDD). 

“The knowledge I gained from my current research at the UFS has enabled me to make valuable contributions to the board and its recommendations to the Minister of Police,” says Dr Ehlers. 

In her first term as member of the Board – following regular tracking and analysis of reports, the Board noted an increase in the number of outstanding forensic investigative leads – (hits on the National Forensic DNA Database) that were not followed up.

“After we made enquiries, it was determined that the provincial task teams that were to follow up on the leads, were ad hoc structures that lacked the necessary resources. The Board addressed this shortfall by engaging with various stakeholders and helping to establish permanent structures, called Forensic Investigative Units, with dedicated resources – both human and material – to effectively follow up on all forensic DNA investigative leads. The finalised Regulations were published for comment in the Government Gazette on 27 March 2020,” says Dr Ehlers.

Lowering SA crime rate
While serving on this board, she is ensuring that South Africa has a functioning DNA database that contributes to lowering the crime rate in the country. “As a member of the board, I hope to add value to its functioning. I feel that in the future, science will play an even bigger role in crime prevention, detection, and the solving of crimes,” she states.

Dr Ehlers is Programme Director of the Forensic Sciences Programme in the Department of Genetics. She teaches the Crime Scene Management module to second-year students and supervises seven honours, five MSc, and three PhD students. 

Besides her appointment as member of the NFOEB, she values the work she is doing with her students. “The highlight of my career was when my first group of BScHons students in Forensic Genetics graduated and were shortly thereafter appointed by the Forensic Sciences Laboratory as DNA analysts,” she says. 

News Archive

Nobel Prize-winner presents first lecture at Vice-Chancellor’s prestige lecture series
2017-11-17


 Description: Prof Levitt visit Tags: Prof Levitt visit

At the first lecture in the UFS Vice Chancellor’s Prestige Lecture series,
were from the left: Prof Jeanette Conradie, UFS Department of Chemistry;
Prof Michael Levitt, Nobel Prize-winner in Chemistry, biophysicist and
professor in structural biology at Stanford University; Prof Francis Petersen,
UFS Vice-Chancellor and Rector; and Prof Corli Witthuhn,
UFS Vice-Rector: Research. 
Photo: Johan Roux

South African born biophysicist and Nobel Prize-winner in Chemistry, Prof Michael Levitt, paid a visit to the University of the Free Sate (UFS) as part of the Academy of Science of South Africa’s (ASSAf) Distinguished Visiting Scholars’ Programme. 

Early this week the professor in structural biology at Stanford University in the US presented a captivating lecture on the Bloemfontein Campus on his lifetime’s work that earned him the Nobel Prize in 2013. His lecture launched the UFS Vice-Chancellor’s Prestige Lecture series, aimed at knowledge sharing within, and beyond our university boundaries. 

Prof Levitt was one of the first researchers to conduct molecular dynamics simulations of DNA and proteins and developed the first software for this purpose. He received the prize for Chemistry, together with Martin Karplus and Arieh Warshel, “for the development of multiscale models for complex chemical systems”.

Attending the lecture were members of UFS management, academic staff from a range of faculties and other universities as well as young researchers. “Multiscale modelling is very much based on something that makes common sense,” Prof Levitt explained. “And that is to makes things as simple as possible, but not simpler. Everything needs to have the right level of simplicity, that is not too simple, but not too complicated.”  

An incredible mind
Prof Levitt enrolled for applied mathematics at the University of Pretoria at the age of 15. He visited his uncle and aunt in London after his first-year exams, and decided to stay on because they had a television, he claims. A series on molecular biology broadcast on BBC, sparked an interest that would lead Prof Levitt via Israel, and Cambridge, to the Nobel Prize stage – all of which turned out to be vital building blocks for his research career. 

Technology to the rescue
The first small protein model that Prof Levitt built was the size of a room. But that exercise led to the birth of multiscale modelling of macromolecules. For the man on the street, that translates to computerised models used to simulate protein action, and reaction. With some adaptations, the effect of medication can be simulated on human protein in a virtual world. 

“I was lucky to stand on the shoulder of giants,” he says about his accomplishments, and urges the young to be good and kind. “Be passionate about what you do, be persistent, and be original,” he advised.  

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept