Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
10 June 2020 | Story Leonie Bolleurs | Photo Supplied
Dr Ehlers was appointed to serve on the National Forensic Oversight and Ethics Board of 10 members for a second term, based on her knowledge in the field of forensic sciences.

Dr Karen Ehlers from the Department of Genetics at the University of the Free State (UFS) was elected as a member of the National Forensic Oversight and Ethics Board (NFOEB) for a second term.

Dr Ehlers has been appointed to the board of 10 members based on her knowledge in the field of forensic sciences. She is currently conducting research focusing on the forensic application of Y-STR markers, the statistical analysis of DNA profiles, and touch DNA.

Making valuable contributions
Her expertise in the field of forensic genetics assists the board – which also handles complaints about alleged violations relating to the abuse of DNA samples and forensic DNA profiles – to oversee the operations of the Forensic Science Laboratory and the National Forensic DNA Database (NFDD). 

“The knowledge I gained from my current research at the UFS has enabled me to make valuable contributions to the board and its recommendations to the Minister of Police,” says Dr Ehlers. 

In her first term as member of the Board – following regular tracking and analysis of reports, the Board noted an increase in the number of outstanding forensic investigative leads – (hits on the National Forensic DNA Database) that were not followed up.

“After we made enquiries, it was determined that the provincial task teams that were to follow up on the leads, were ad hoc structures that lacked the necessary resources. The Board addressed this shortfall by engaging with various stakeholders and helping to establish permanent structures, called Forensic Investigative Units, with dedicated resources – both human and material – to effectively follow up on all forensic DNA investigative leads. The finalised Regulations were published for comment in the Government Gazette on 27 March 2020,” says Dr Ehlers.

Lowering SA crime rate
While serving on this board, she is ensuring that South Africa has a functioning DNA database that contributes to lowering the crime rate in the country. “As a member of the board, I hope to add value to its functioning. I feel that in the future, science will play an even bigger role in crime prevention, detection, and the solving of crimes,” she states.

Dr Ehlers is Programme Director of the Forensic Sciences Programme in the Department of Genetics. She teaches the Crime Scene Management module to second-year students and supervises seven honours, five MSc, and three PhD students. 

Besides her appointment as member of the NFOEB, she values the work she is doing with her students. “The highlight of my career was when my first group of BScHons students in Forensic Genetics graduated and were shortly thereafter appointed by the Forensic Sciences Laboratory as DNA analysts,” she says. 

News Archive

UFS research could light up South African homes
2016-01-21

Reitumetse Maloa, postgraduate student and researcher at the UFS Department of Microbial, Biochemical and Food Biotechnology, is using her research to provide solutions to the energy crises in South Africa.

A young researcher at the university is searching for the solution to South Africa’s energy and electricity problems from a rather unlikely source: cow dung.

“Cow dung could help us power South Africa,” explains Reitumetse Maloa, postgraduate student and researcher at the UFS Department of Microbial, Biochemical and Food Biotechnology.

Reitumetse’s research is trying to understand how the bacteria works that is responsible for producing biogas.

“Biogas can be used for cooking, heating, lighting and powering generators and turbines to make electricity. The remaining liquid effluent can fertilise crops, as it is high in nitrogen, phosphorus and potassium.”

By using cow dung and food waste to produce biogas, we will be able to lower greenhouse gases.

Biogas is produced in a digester - an oxygen-free space in which bacteria break down or digest organic material fed into the system. This process naturally produces biogas, which is mainly a mixture of methane and carbon dioxide.

“Many countries, such as Germany and the United States, have begun generating electricity from cow dung and food waste, through a process known as biogas production. In South Africa, a number of industries, including waste-water treatment facilities and farms, have caught on to this technology, using it to generate heat and to power machines.”

Until recently the world has relied heavily on electricity derived from fossil fuels such as coal, natural gas and oil. Once these fuels have been extracted from underground reservoirs, they are treated or cleaned, transported to power plants and transformed into the electricity that will reach your house. Fossil fuels are considered a ‘dirty’ energy source which gives off greenhouse gases when burned. Those gases are the major contributing factor to climate change.

“We know very little about the interaction of the bacteria inside the biogas digester. To use biogas as a sustainable fuel source, we need to understand and describe the bacteria population and growth dynamics inside the digester to produce biogas optimally. Currently we are testing a variety of feedstock, including bran, maize and molasses, for biogas production potential, as well as optimising the conditions leading to maximum biogas production. We are also exploring the potential to use the effluent as fertiliser on local farms. The ultimate goal is to have biogas systems that will supply our university with clean energy.”


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept