Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
18 June 2020 | Story Dr Chantell Witten | Photo Supplied
Dr Chantell Witten.

On 26 March 2020, the President declared a national lockdown in response to the COVID-19 pandemic as it started to emerge in South Africa. Since then and several weeks into the lockdown, Statistics South Africa (2020) has provided evidence which many intuitively knew would be more devastating to households than the coronavirus itself – loss of income and the negative effects that follow hunger. Stats SA reported that the percentage of respondents receiving no income increased from 5,2% before the lockdown to 15,4% by the sixth week of the national lockdown. Given that the majority of South Africans depend on the informal labour market, such as informal traders and casual workers, this lack of income would hit millions of households. Furthermore, Stats SA also reported a decrease in formal wage/salary earners for the same period, from 76,6% before the national lockdown to 66,7% by the sixth week of national lockdown.

While South Africa is food secure at national level, millions of households are food insecure. According to the United Nations Food and Agriculture Organization’s (FAO) 1996 definition of food security, this simply means that there is not enough food at all times for all the people in a household to have physical and economic access to sufficient, safe, and nutritious food that meets their dietary needs and food preferences for an active and healthy life.  In short, people are hungry and at greater risk for ill health – physically, emotionally, and spiritually.  A hungry man is an angry man. Likewise, a hungry nation is an angry nation.

In July 2019, the measurement of extreme poverty – the food poverty line (FPL) – was raised to R561 (using April 2019 prices) per person per month, which was up from R547 last year. This is the amount of money that Stats SA calculates an individual requires “to afford the minimum required daily energy intake” of 2 100 calories per day. Before the onset of the COVID-19 pandemic, South Africa already had a precarious food and nutrition situation, especially for young children. South Africa’s child stunting levels – an indication of chronic and long-term food insecurity – increased from 21% in 2008 to 27% in 2016.  With COVID-19 and the subsequent lockdown, child malnutrition rates are expected to increase. Stunting not only affects a child’s health, making them more susceptible to disease and infection, but also impairs their mental and physical development – meaning that children who suffer from stunting are less likely to achieve their full height and cognitive potentials as adults.  

What can we do to address this food situation or prevent it from worsening?
The 2020 Global Nutrition Report recognises and asserts that inequality and globalisation are major drivers of food insecurity. As individuals and as collectives, we need to continue to advocate for and support calls to continue raising the child support grant to help households stay above the poverty line.  Millions of households in South Africa are supported by social grants; in solidarity, we need to appreciate the safety net that these social grants provide to vulnerable households. Advocate for and support initiatives to safeguard child health and nutrition, including efforts to promote, protect, and support breastfeeding in neonatal care, postnatal care, and ongoing support to breastfeeding mothers.  Breastfeeding remains the most cost-effective health intervention for infants and young children, supporting optimal growth and development and providing long-term health benefits into adulthood. Advocate for and support initiatives to coordinate sustainable food support to vulnerable households, including, among others, food distribution, food vouchers, onsite feeding, home gardening, and tax-free food baskets.  These efforts would be our collective solidarity to support and protect vulnerable households as we enter the global economic recession as a result of COVID-19.

How can we protect our households’ food and nutrition security? 
COVID-19 brings with it much uncertainty and many unintended negative effects.  While we seek out strategies to support mental well-being and emotional resilience, we also need to remain physically healthy.  Good nutrition is fundamental to good health and well-being. South Africa has a set of ten healthy eating guidelines that promote the principles of eating more unprocessed foods, eating more vegetables and fruit, reducing the use of fats and oils and reducing the intake of sugar and salt.  Good nutrition starts with good food and sometimes good food can cost more, so it is important to use your food budget wisely.  The food budget includes food eaten at home, as well as funds spent on food eaten outside of the home, eating take-outs, foods bought online, and food eaten away from home.  Planning your meals in advance and sticking to a food plan will limit opportunities to spend money on items that are not on the plan; planning ahead also means you can take advantage of good prices, especially as food prices are on the increase and will continue to increase. Bulking up when prices are low and on special, making use of combo buying, e.g. buy three and pay for two, and buying directly from food producers such as co-ops, all help to save money in the long run.  Meat, fish, and especially seafood are the most expensive food items; rather use eggs, chicken, and less expense meat cuts for your meals.  Legumes such as dried beans, peas, and soya are less expensive with great nutritional value.  Explore these less-known group of foods with many great health benefits, such as no fat, more fibre, and lots of vitamins and minerals.

In an effort to eat more fresh vegetables and fruit, starting a home garden is a great family challenge and a definite way of keeping food costs low. And as we navigate the new normal post-COVID times ahead, let us keep mealtimes and meal preparation a fun family activity. Discovering new foods and new tastes can be as exciting as travelling to a new place.  Stay safe, stay healthy! 

Opinion article by Dr Chantell Witten, Division of Health Professions Education, University of the Free State.


News Archive

Fight against Ebola virus requires more research
2014-10-22

 

Dr Abdon Atangana
Photo: Ifa Tshishonge
Dr Abdon Atangana, a postdoctoral researcher in the Institute for Groundwater Studies at the University of the Free State (UFS), wrote an article related to the Ebola virus: Modelling the Ebola haemorrhagic fever with the beta-derivative: Deathly infection disease in West African countries.

“The filoviruses belong to a virus family named filoviridae. This virus can cause unembellished haemorrhagic fever in humans and nonhuman monkeys. In literature, only two members of this virus family have been mentioned, namely the Marburg virus and the Ebola virus. However, so far only five species of the Ebola virus have been identified, including:  Ivory Coast, Sudan, Zaire, Reston and Bundibugyo.

“Among these families, the Ebola virus is the only member of the Zaire Ebola virus species and also the most dangerous, being responsible for the largest number of outbreaks.

“Ebola is an unusual, but fatal virus that causes bleeding inside and outside the body. As the virus spreads through the body, it damages the immune system and organs. Ultimately, it causes the blood-clotting levels in cells to drop. This leads to severe, uncontrollable bleeding.

Since all physical problems can be modelled via mathematical equation, Dr Atangana aimed in his research (the paper was published in BioMed Research International with impact factor 2.701) to analyse the spread of this deadly disease using mathematical equations. We shall propose a model underpinning the spread of this disease in a given Sub-Saharan African country,” he said.

The mathematical equations are used to predict the future behaviour of the disease, especially the spread of the disease among the targeted population. These mathematical equations are called differential equation and are only using the concept of rate of change over time.

However, there is several definitions for derivative, and the choice of the derivative used for such a model is very important, because the more accurate the model, the better results will be obtained.  The classical derivative describes the change of rate, but it is an approximation of the real velocity of the object under study. The beta derivative is the modification of the classical derivative that takes into account the time scale and also has a new parameter that can be considered as the fractional order.  

“I have used the beta derivative to model the spread of the fatal disease called Ebola, which has killed many people in the West African countries, including Nigeria, Sierra Leone, Guinea and Liberia, since December 2013,” he said.

The constructed mathematical equations were called Atangana’s Beta Ebola System of Equations (ABESE). “We did the investigation of the stable endemic points and presented the Eigen-Values using the Jacobian method. The homotopy decomposition method was used to solve the resulted system of equations. The convergence of the method was presented and some numerical simulations were done for different values of beta.

“The simulations showed that our model is more realistic for all betas less than 0.5.  The model revealed that, if there were no recovery precaution for a given population in a West African country, the entire population of that country would all die in a very short period of time, even if the total number of the infected population is very small.  In simple terms, the prediction revealed a fast spread of the virus among the targeted population. These results can be used to educate and inform people about the rapid spread of the deadly disease,” he said.

The spread of Ebola among people only occurs through direct contact with the blood or body fluids of a person after symptoms have developed. Body fluid that may contain the Ebola virus includes saliva, mucus, vomit, faeces, sweat, tears, breast milk, urine and semen. Entry points include the nose, mouth, eyes, open wounds, cuts and abrasions. Note should be taken that contact with objects contaminated by the virus, particularly needles and syringes, may also transmit the infection.

“Based on the predictions in this paper, we are calling on more research regarding this disease; in particular, we are calling on researchers to pay attention to finding an efficient cure or more effective prevention, to reduce the risk of contamination,” Dr Atangana said.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept