Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
18 June 2020 | Story Nitha Ramnath | Photo Supplied
Mischke Bouwer.

Mischke Bouwer was recently awarded a Fulbright scholarship to study her PhD in Geoscience at the Southern Illinois University (SIU). The duration of the programme at SIU is five years, starting in August 2020.

Fulbright is a scholarship programme that recruits students from all over the world in any field of study to do their postgraduate studies in America. This is done through funding from Fulbright, together with the country's government and American universities. 

“This is not only a funding scholarship, but a supportive community! It really does feel like teamwork so far. The people from Fulbright ensure that the students feel as comfortable and enlightened as possible when leaving the country, and I am sure it will be the same when I arrive in America,” says Mischke.

Mischke considers herself an average girl who grew up in Pretoria; she enrolled at the UFS for a BSc in Geology from 2014 to 2016, followed by an Honours in Geology in 2017, and MSc in Soil Science. 
“I took a big chance by applying for a Fulbright scholarship but did not expect anything, as I felt I would never be good enough – but look where I am now,” says Mischke.

“I am speechless about the scholarship I received. There are many people I would like to thank who helped me along the way to achieve this scholarship. I would love this opportunity to thank all my lecturers from the UFS, both in the departments of Geology and Soil Science. Thanks to my supervisors for always believing in me. A special thanks to Prof Cornie van Huyssteen who was fully behind me, impacting my way of thinking, and teaching me a lot in two years.”

Mischke dedicates this scholarship to the late Prof Marian Tredoux, a true scientist and lecturer in the Department of Geology, who not only contributed greatly to the sciences, but truly impacted her students. “She inspired me to work hard and showed me an example of what a woman in science could be,” says Mischke.

She encourages students to apply for this scholarship, adding that there is nothing to lose. According to Mischke, students are much smarter than they would like to believe and should therefore always be mindful that their future is way brighter than they think.

“Make your role model YOU in 10 years and keep it that way! This way you always have someone to strive for!” says Mischke.

Mischke works on the absorption potential of arsenic and selenium in the field of environmental geochemistry and geochemical modelling. She hopes to return to South Africa with this knowledge and to make a difference in the remediation and rehabilitation of mines. 

News Archive

Carbon dioxide makes for more aromatic decaffeinated coffee
2017-10-27


 Description: Carbon dioxide makes for more aromatic decaffeinated coffee 1b Tags: Carbon dioxide makes for more aromatic decaffeinated coffee 1b 

The Inorganic Group in the Department of Chemistry
at the UFS is systematically researching the utilisation
of carbon dioxide. From the left, are, Dr Ebrahiem Botha,
Postdoctoral Fellow; Mahlomolo Khasemene, MSc student;
Prof André Roodt; Dr Marietjie Schutte-Smith, Senior Lecturer;
and Mokete Motente, MSc student.
Photo: Charl Devenish

Several industries in South Africa are currently producing hundreds of thousands of tons of carbon dioxide a year, which are released directly into the air. A typical family sedan doing around 10 000 km per year, is annually releasing more than one ton of carbon dioxide into the atmosphere.

The Inorganic Chemistry Research Group in the Department of Chemistry at the University of the Free State (UFS), in collaboration with the University of Zurich in Switzerland, has focused in recent years on using carbon dioxide – which is regarded as a harmful and global warming gas – in a meaningful way. 

According to Prof André Roodt, Head of Inorganic Chemistry at the UFS, the Department of Chemistry has for the past five decades been researching natural products that could be extracted from plants. These products are manufactured by plants through photosynthesis, in other words the utilisation of sunlight and carbon dioxide, nitrogen, and other nutrients from the soil.

Caffeine and chlorophyll 
“The Inorganic group is systematically researching the utilisation of carbon dioxide. Carbon dioxide is absorbed by plants through chlorophyll and used to make interesting and valuable compounds and sugars, which in turn could be used for the production of important new medicines,” says Prof Roodt.

Caffeine, a major energy enhancer, is also manufactured through photosynthesis in plants. It is commonly found in tea and coffee, but also (artificially added) in energy drinks. Because caffeine is a stimulant of the central nervous system and reduces fatigue and drowsiness, some people prefer decaffeinated coffee when enjoying this hot drink late at night. 

Removing caffeine from coffee could be expensive and time-consuming, but also environmentally unfriendly, because it involves the use of harmful and flammable liquids. Some of the Inorganic Group’s research focus areas include the use of carbon dioxide for the extraction of compounds, such as caffeine from plants. 

“Therefore, the research could lead to the availability of more decaffeinated coffee products. Although decaffeinated coffee is currently aromatic, we want to investigate further to ensure better quality flavours,” says Prof Roodt.

Another research aspect the team is focusing on is the use of carbon dioxide to extract chlorophyll from plants which have medicinal properties themselves. Chemical suppliers sell chlorophyll at R3 000 a gram. “In the process of investigating chlorophyll, our group discovered simpler techniques to comfortably extract larger quantities from green vegetables and other plants,” says Prof Roodt.

Medicines
In addition, the Inorganic Research Group is also looking to use carbon dioxide as a building block for more valuable compounds. Some of these compounds will be used in the Inorganic Group’s research focus on radiopharmaceutical products for the identification and possibly even the treatment of diseases such as certain cancers, tuberculosis, and malaria.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept