Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 June 2020 | Story Leonie Bolleurs | Photo Supplied
Prof Arno Hugo recently participated in a session on food with integrity during a webinar by the Integra Trust, where he presented a lecture focusing on the importance of food traceability and the information communicated to the consumer.

In the complete process between farm and fork, consumers are looking for someone to hold accountable if their animal welfare, product quality, and product safety expectations are not met.

On World Sustainable Gastronomy Day earlier this month (18 June 2020), Prof Arno Hugo from the Department of Microbial, Biochemical and Food Biotechnology’s Food Science division at the University of the Free State (UFS) participated in a webinar by the Integra Trust, titled Heal the Land, Heal the People.

The Integra Trust was established to advance climate-smart sustainable and regenerative agriculture. It values the production, distribution, and utilisation of food with integrity in order to heal the land and the people.

Integra Trust strives to promote agriculture that has a limited footprint on the environment.

Prof Hugo’s lecture during the session on food with integrity, focused on the importance of the traceability of food and the information communicated to the consumer. 

Physical and emotional connectedness to farm and the producer
According to him, modern consumers want to know where their food comes from and want to be physically and emotionally connected to the farm and the producer. In the case of meat, for example, they want to know if the meat they buy is ethically produced and whether the animal was treated in a humane manner during the slaughter process. They also want a guarantee that the food they buy is free of harmful substances.

Prof Hugo states: “The consumer’s need for origin-based food is now playing out in a variety of ways, as food processors and retailers are labelling their products according to the origin of the product. One way of achieving this, is through a good traceability system.”

In his presentation, he focused on traceability from a meat industry perspective.

“Thus, in a good traceability system, a product on the store shelf can easily be traced back to the farmer and the farm where the food was originally produced. In modern traceability systems, it is even possible for the consumer to take the product in the store to a scanner that can read the ‘barcode’ and then showing a photo of the farmer and the name and location of the farm where it was produced,” explains Prof Hugo.

Food traceability important from food safety point of view
“Despite the consumer’s emotional need to connect with the farm and the producer, food traceability is also extremely important from a food security and food safety point of view,” he adds.

Although in its simplest form, it is a comprehensive process of keeping record of suppliers and customers in order to allow reconstruction of the product chain in case of need, it is doable. “In Europe, some 25 million cattle per year are now slaughtered with full traceability. The challenge of providing a secure form of identity through this process, is therefore a formidable one. This is achieved with the use of modern technologies such as Blockchain and DNA technology,” explains Prof Hugo. 

Joining him in the session on food with integrity were, among others, Errieda du Toit, chef, food writer, and culinary commentator (talking about perceptions in terms of difference between fast food and story food, asking if it is driven by social media) and Christiaan Campbell, chef and food consultant (talking about achieving synergy and communication between producer and consumer via the food value chain). Steven Barnard of Farmer Kidz presented a session focused on the younger generation, focusing on why it is important to connect children with food production.

News Archive

UFS physicists publish in prestigious Nature journal
2017-10-16

Description: Boyden Observatory gravitational wave event Tags: Boyden Observatory, gravitational wave event, Dr Brian van Soelen, Hélène Szegedi, multi-wavelength astronomy 
Hélène Szegedi and Dr Brian van Soelen are scientists in the
Department of Physics at the University of the Free State.

Photo: Charl Devenish

In August 2017, the Boyden Observatory in Bloemfontein played a major role in obtaining optical observations of one of the biggest discoveries ever made in astrophysics: the detection of an electromagnetic counterpart to a gravitational wave event.
 
An article reporting on this discovery will appear in the prestigious science journal, Nature, in October 2017. Co-authors of the article, Dr Brian van Soelen and Hélène Szegedi, are from the Department of Physics at the University of the Free State (UFS). Both Dr Van Soelen and Szegedi are researching multi-wavelength astronomy.
 
Discovery is the beginning of a new epoch in astronomy
 
Dr van Soelen said: “These observations and this discovery are the beginning of a new epoch in astronomy. We are now able to not only undertake multi-wavelength observations over the whole electromagnetic spectrum (radio up to gamma-rays) but have now been able to observe the same source in both electromagnetic and gravitational waves.”
 
Until recently it was only possible to observe the universe using light obtained from astronomical sources. This all changed in February 2016 when LIGO (Laser Interferometer Gravitational-Wave Observatory) stated that for the first time they had detected gravitational waves on 14 September 2015 from the merger of two black holes. Since then, LIGO has announced the detection of two more such mergers. A fourth was just reported (27 September 2017), which was the first detected by both LIGO and Virgo. However, despite the huge amount of energy released in these processes, none of this is detectable as radiation in any part of the electromagnetic spectrum. Since the first LIGO detection astronomers have been searching for possible electromagnetic counterparts to gravitational wave detections. 
 
Large international collaboration of astronomers rushed to observe source
 
On 17 August 2017 LIGO and Virgo detected the first ever gravitational waves resulting from the merger of two neutron stars. Neutron star mergers produce massive explosions called kilonovae which will produce a specific electromagnetic signature. After the detection of the gravitational wave, telescopes around the world started searching for the optical counterpart, and it was discovered to be located in an elliptical galaxy, NGC4993, 130 million light years away. A large international collaboration of astronomers, including Dr Van Soelen and Szegedi, rushed to observe this source.
 
At the Boyden Observatory, Dr Van Soelen and Szegedi used the Boyden 1.5-m optical telescope to observe the source in the early evening, from 18 to 21 August. The observations obtained at Boyden Observatory, combined with observations from telescopes in Chile and Hawaii, confirmed that this was the first-ever detection of an electromagnetic counterpart to a gravitational wave event. Combined with the detection of gamma-rays with the Fermi-LAT telescope, this also confirms that neutron star mergers are responsible for short gamma-ray bursts.  
 
The results from these optical observations are reported in A kilonova as the electromagnetic counterpart to a gravitational-wave source published in Nature in October 2017.
 
“Our paper is one of a few that will be submitted by different groups that will report on this discovery, including a large LIGO-Virgo paper summarising all observations. The main results from our paper were obtained through the New Technology Telescope, the GROND system, and the Pan-STARRS system. The Boyden observations helped to obtain extra observations during the first 72 hours which showed that the light of the source decreased much quicker than was expected for supernova, classifying this source as a kilonova,” Dr Van Soelen said.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept