Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
17 June 2020 | Story Andre Damons | Photo Supplied
Food parcels
Annelize Visagie (Food Environment Office, with the black mask), Belinda Janeke (Career Services) and Angelo Mockie (Art, Culture and Dialogue Office) from the Division Student Affairs (DSA) busy preparing food parcels in the storeroom at the Thakaneng Bridge

Between 40 and 50 students from the University of the Free State (UFS) in Bloemfontein receive daily food parcels during the lockdown, thanks to the cooperation between the Food Environment Office at the UFS, Tiger Brands, and the Total Garage in Brandwag.

Annelize Visagie from the Division of Student Affairs (DSA), who is heading the Food Environment Office at the UFS, says just before the national lockdown started in March, they signed a Memorandum of Understanding (MOU) with Tiger Brands to sponsor 500 food parcels to students who do not have bursaries. This is part of the UFS strategic goal of improving student success and wellbeing. UFS staff is working hard to implement initiatives and obtain sponsorships – such as this one with Tiger Brands – as well as food donations to ensure that students do not go hungry.

“Then the lockdown happened. However, the project continued, with Tiger Brands still sponsoring food parcels. Students email me and I respond to those emails. We are also looking at including students from the South Campus in the project.”

“I deliver the food parcels to the Total Garage across from the campus, where students collect it. We give between 40 and 50 parcels every day and have helped 650 students thus far. These parcels cost Tiger Brands R80 000 a month. We also provide students with vegetables from vegetable tunnels on campus,” says Visagie.

Visagie says the cooperation between the outside companies, the UFS, and even staff and students who volunteer, is heart-warming to see especially during this time of crisis. So is the gratitude from the students. They are also in discussions with the humanitarian organisation Gift of the Givers to provide 200 food parcels to needy students from next month.

“We have a supply chain going on in the storeroom at the Thakaneng Bridge. It is great to see how staff members and students jumped in to help us pack the parcels. We have permits and more students want to help, but they can’t get onto campus at this time. We would not be able to do this without the help of Tiger Brands and the Total Garage.”  

The DSA Food Environment Office is also collaborating with senior management on the UFS Qwaqwa and South campuses to distribute food parcels on these two campuses.

News Archive

UFS study on cell development in top international science journal
2008-09-16

A study from the University of the Free State (UFS) on how the change in the packaging of DNA with cell development influenced the expression of genes, will be published in this week’s early edition of the prestigious international, peer-reviewed science journal, the Proceeding of the National Academy of Sciences of the USA (PNAS).

The PNAS journal has an impact factor of 10, which means that studies published in the journal are, on average, referred to by ten other scientific studies in a two year period. The South African Journal of Science, by comparison, has an impact factor of 0.7.

The UFS study, funded by the Wellcome Trust and the National Research Foundation (NRF), looked at how the change in the packaging of DNA with cell development influenced the expression of genes. It is very relevant to research on stem cells, an area of medicine that studies the possible use of undifferentiated cells to replace damaged tissue.

Prof. Hugh Patterton, of the Department of Microbial, Biochemical and Food Biotechnology at the UFS, who led the study, said: "We are extremely proud of this study. It was conceived in South Africa, it was performed in South Africa, the data were analysed in South Africa, and it was published from South Africa."

When a gene is expressed, the information encoded in the gene is used to manufacture a specific protein. In eukaryotes, which include humans, there is approximately 1m of DNA, containing the genes, in every cell. This length of DNA has to fit into a cell nucleus with a diameter of only about 10 micrometer. In order to fit the DNA into such a small volume, eukaryotic cells wrap their DNA onto successive protein balls, termed nucleosomes. Strings of nucleosomes, resembling a bead of pearls, is folded into a helix to form a chromatin fiber. The study from the UFS investigated how the binding of a specific protein, termed a linker histone, that binds to the length of DNA between nucleosomes, influenced the formation of the chromatin fiber and also the activity of genes.

"We found that the linker histone bound to chromatin in yeast, which we use as a model eukaryote, under conditions where virtually all the genes in the organism were inactive. It was widely believed that the binding of the linker histone caused the inactivation of genes. We studied the relationship between the amount of linker histone bound in the vicinity of each gene and the expression of that gene for all the genes in yeast, using genomic techniques. We made the surprising discovery that even through the linker histone preferentially bound to genes under conditions where the genes were shut off, this inactivation of genes was not caused by the binding of the linker histone and folding of the chromatin,” said Prof. Patterton.

He said: “Instead our data strongly suggested that the observed anti-correlation was due to the movement of enzymes along the DNA molecule, involved in processing the information in genes for the eventual manufacture of proteins. This movement of enzymes displaced the linker histones from the DNA. This finding now requires a rethink on aspects of how packaging of DNA influences gene activity."

Prof. Patterton said that his research group, using the Facility for Genomics and Proteomics as well as the Bioinformatics Node at the UFS, was currently busy with follow-up studies to understand how other proteins in nucleosomes affected the activities of genes, as well as with projects to understand how chemicals found in red wine and in green tea extended lifespan. "We are certainly having a marvelous time trying to understand the fundamental mechanisms of life, and the UFS is an exciting place to be if one was interested in studying life at the level of molecules," he said.


Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
18 September 2008
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept