Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
17 June 2020 | Story Andre Damons | Photo Supplied
Food parcels
Annelize Visagie (Food Environment Office, with the black mask), Belinda Janeke (Career Services) and Angelo Mockie (Art, Culture and Dialogue Office) from the Division Student Affairs (DSA) busy preparing food parcels in the storeroom at the Thakaneng Bridge

Between 40 and 50 students from the University of the Free State (UFS) in Bloemfontein receive daily food parcels during the lockdown, thanks to the cooperation between the Food Environment Office at the UFS, Tiger Brands, and the Total Garage in Brandwag.

Annelize Visagie from the Division of Student Affairs (DSA), who is heading the Food Environment Office at the UFS, says just before the national lockdown started in March, they signed a Memorandum of Understanding (MOU) with Tiger Brands to sponsor 500 food parcels to students who do not have bursaries. This is part of the UFS strategic goal of improving student success and wellbeing. UFS staff is working hard to implement initiatives and obtain sponsorships – such as this one with Tiger Brands – as well as food donations to ensure that students do not go hungry.

“Then the lockdown happened. However, the project continued, with Tiger Brands still sponsoring food parcels. Students email me and I respond to those emails. We are also looking at including students from the South Campus in the project.”

“I deliver the food parcels to the Total Garage across from the campus, where students collect it. We give between 40 and 50 parcels every day and have helped 650 students thus far. These parcels cost Tiger Brands R80 000 a month. We also provide students with vegetables from vegetable tunnels on campus,” says Visagie.

Visagie says the cooperation between the outside companies, the UFS, and even staff and students who volunteer, is heart-warming to see especially during this time of crisis. So is the gratitude from the students. They are also in discussions with the humanitarian organisation Gift of the Givers to provide 200 food parcels to needy students from next month.

“We have a supply chain going on in the storeroom at the Thakaneng Bridge. It is great to see how staff members and students jumped in to help us pack the parcels. We have permits and more students want to help, but they can’t get onto campus at this time. We would not be able to do this without the help of Tiger Brands and the Total Garage.”  

The DSA Food Environment Office is also collaborating with senior management on the UFS Qwaqwa and South campuses to distribute food parcels on these two campuses.

News Archive

Fight against Ebola virus requires more research
2014-10-22

 

Dr Abdon Atangana
Photo: Ifa Tshishonge
Dr Abdon Atangana, a postdoctoral researcher in the Institute for Groundwater Studies at the University of the Free State (UFS), wrote an article related to the Ebola virus: Modelling the Ebola haemorrhagic fever with the beta-derivative: Deathly infection disease in West African countries.

“The filoviruses belong to a virus family named filoviridae. This virus can cause unembellished haemorrhagic fever in humans and nonhuman monkeys. In literature, only two members of this virus family have been mentioned, namely the Marburg virus and the Ebola virus. However, so far only five species of the Ebola virus have been identified, including:  Ivory Coast, Sudan, Zaire, Reston and Bundibugyo.

“Among these families, the Ebola virus is the only member of the Zaire Ebola virus species and also the most dangerous, being responsible for the largest number of outbreaks.

“Ebola is an unusual, but fatal virus that causes bleeding inside and outside the body. As the virus spreads through the body, it damages the immune system and organs. Ultimately, it causes the blood-clotting levels in cells to drop. This leads to severe, uncontrollable bleeding.

Since all physical problems can be modelled via mathematical equation, Dr Atangana aimed in his research (the paper was published in BioMed Research International with impact factor 2.701) to analyse the spread of this deadly disease using mathematical equations. We shall propose a model underpinning the spread of this disease in a given Sub-Saharan African country,” he said.

The mathematical equations are used to predict the future behaviour of the disease, especially the spread of the disease among the targeted population. These mathematical equations are called differential equation and are only using the concept of rate of change over time.

However, there is several definitions for derivative, and the choice of the derivative used for such a model is very important, because the more accurate the model, the better results will be obtained.  The classical derivative describes the change of rate, but it is an approximation of the real velocity of the object under study. The beta derivative is the modification of the classical derivative that takes into account the time scale and also has a new parameter that can be considered as the fractional order.  

“I have used the beta derivative to model the spread of the fatal disease called Ebola, which has killed many people in the West African countries, including Nigeria, Sierra Leone, Guinea and Liberia, since December 2013,” he said.

The constructed mathematical equations were called Atangana’s Beta Ebola System of Equations (ABESE). “We did the investigation of the stable endemic points and presented the Eigen-Values using the Jacobian method. The homotopy decomposition method was used to solve the resulted system of equations. The convergence of the method was presented and some numerical simulations were done for different values of beta.

“The simulations showed that our model is more realistic for all betas less than 0.5.  The model revealed that, if there were no recovery precaution for a given population in a West African country, the entire population of that country would all die in a very short period of time, even if the total number of the infected population is very small.  In simple terms, the prediction revealed a fast spread of the virus among the targeted population. These results can be used to educate and inform people about the rapid spread of the deadly disease,” he said.

The spread of Ebola among people only occurs through direct contact with the blood or body fluids of a person after symptoms have developed. Body fluid that may contain the Ebola virus includes saliva, mucus, vomit, faeces, sweat, tears, breast milk, urine and semen. Entry points include the nose, mouth, eyes, open wounds, cuts and abrasions. Note should be taken that contact with objects contaminated by the virus, particularly needles and syringes, may also transmit the infection.

“Based on the predictions in this paper, we are calling on more research regarding this disease; in particular, we are calling on researchers to pay attention to finding an efficient cure or more effective prevention, to reduce the risk of contamination,” Dr Atangana said.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept