Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
17 June 2020 | Story Andre Damons | Photo Supplied
Food parcels
Annelize Visagie (Food Environment Office, with the black mask), Belinda Janeke (Career Services) and Angelo Mockie (Art, Culture and Dialogue Office) from the Division Student Affairs (DSA) busy preparing food parcels in the storeroom at the Thakaneng Bridge

Between 40 and 50 students from the University of the Free State (UFS) in Bloemfontein receive daily food parcels during the lockdown, thanks to the cooperation between the Food Environment Office at the UFS, Tiger Brands, and the Total Garage in Brandwag.

Annelize Visagie from the Division of Student Affairs (DSA), who is heading the Food Environment Office at the UFS, says just before the national lockdown started in March, they signed a Memorandum of Understanding (MOU) with Tiger Brands to sponsor 500 food parcels to students who do not have bursaries. This is part of the UFS strategic goal of improving student success and wellbeing. UFS staff is working hard to implement initiatives and obtain sponsorships – such as this one with Tiger Brands – as well as food donations to ensure that students do not go hungry.

“Then the lockdown happened. However, the project continued, with Tiger Brands still sponsoring food parcels. Students email me and I respond to those emails. We are also looking at including students from the South Campus in the project.”

“I deliver the food parcels to the Total Garage across from the campus, where students collect it. We give between 40 and 50 parcels every day and have helped 650 students thus far. These parcels cost Tiger Brands R80 000 a month. We also provide students with vegetables from vegetable tunnels on campus,” says Visagie.

Visagie says the cooperation between the outside companies, the UFS, and even staff and students who volunteer, is heart-warming to see especially during this time of crisis. So is the gratitude from the students. They are also in discussions with the humanitarian organisation Gift of the Givers to provide 200 food parcels to needy students from next month.

“We have a supply chain going on in the storeroom at the Thakaneng Bridge. It is great to see how staff members and students jumped in to help us pack the parcels. We have permits and more students want to help, but they can’t get onto campus at this time. We would not be able to do this without the help of Tiger Brands and the Total Garage.”  

The DSA Food Environment Office is also collaborating with senior management on the UFS Qwaqwa and South campuses to distribute food parcels on these two campuses.

News Archive

Researcher part of project aimed at producing third-generation biofuels from microalgae in Germany
2016-05-09

Description: Novagreen bioreactor  Tags: Novagreen bioreactor

Some of the researchers and technicians among the tubes of the Novagreen bioreactor (Prof Grobbelaar on left)

A researcher from the University of the Free State (UFS), Prof Johan Grobbelaar, was invited to join a group of scientists recently at the Institute for Bio- and Geo-Sciences of the Research Centre Jülich, in Germany, where microalgae are used for lipid (oil) production, and then converted to kerosene for the aviation industry.

The project is probably the first of its kind to address bio-fuel production from microalgae on such a large scale.  

“The potential of algae as a fuel source is undisputed, because it was these photoautotrophic micro-organisms that were fixing sunlight energy into lipids for millions of years, generating the petroleum reserves that modern human civilisation uses today.  However, these reserves are finite, so the challenge is marrying biology with technology to produce economically-competitive fuels without harming the environment and compromising our food security.  The fundamental ability that microalgae have to produce energy-rich biomass from CO2, nutrients, and sunlight through photosynthesis for biofuels, is commonly referred to as the Third-Generation Biofuels (3G),” said Prof Grobbelaar.

The key compounds used for bio-diesel and kerosene production are the lipids and, more particularly, the triacylglyserols commonly referred to as TAGs.  These lipids, once extracted, need to be trans-esterified for biodiesel, while a further “cracking” step is required to produce kerosene.  Microalgae can store energy as lipids and/or carbohydrates. However, for biofuels, microalgae with high TAG contents are required.  A number of such algae have been isolated, and lipid contents of up to 60% have been achieved.

According to Prof Grobbelaar, the challenge is large-scale, high-volume production, since it is easy to manipulate growth conditions in the laboratory for experimental purposes.  

The AUFWIND project (AUFWIND, a German term for up-current, or new impetus) in Germany consists of three different commercially-available photobioreactor types, which are being compared for lipid production.

Description: Lipid rich chlorella Tags: Lipid rich chlorella

Manipulated Chlorella with high lipid contents (yellow) in the Novagreen bioreactor

The photobioreactors each occupies 500 m2 of land surface area, are situated next to one another, and can be monitored continuously.  The three systems are from Novagreen, IGV, and Phytolutions.  The Novagreen photobioreactor is housed in a glass house, and consist of interconnected vertical plastic tubes roughly 150 mm in diameter. The Phytolutions system is outdoors, and consists of curtains of vertical plastic tubes with a diameter of about 90 mm.  The most ambitious photobioreactor is from IGV, and consists of horizontally-layered nets housed in a plastic growth hall, where the algae are sprayed over the nets, and allowed to grow while dripping from one net to the next.

Prof Grobbelaar’s main task was to manipulate growth conditions in such a way that the microalgae converted their stored energy into lipids, and to establish protocols to run the various photobioreactors. This was accomplished in just over two months of intensive experimentation, and included modifications to the designs of the photobioreactors, the microalgal strain selection, and the replacement of the nutrient broth with a so-called balanced one.

Prof Grobbelaar has no illusions regarding the economic feasibility of the project.  However, with continued research, optimisation, and utilisation of waste resources, it is highly likely that the first long-haul flights using microalgal-derived kerosene will be possible in the not-too-distant future.

Prof Grobbelaar from the Department of Plant Sciences, although partly retired, still serves on the editorial boards of several journals. He is also involved with the examining of PhDs, many of them from abroad.  In addition, he assisted the Technology Innovation Agency of South Africa in the formulation of an algae-biotechnology and training centre.  “The chances are good that such a centre will be established in Upington, in the Northern Cape,” Prof Grobbelaar said.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept