Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
10 June 2020 | Story Leonie Bolleurs | Photo Supplied
Prof Zakkie Pretorius, left, plays a significant role in providing pathology support to the plant breeding industry.Prof Liezel Herselman contributes to plant breeding in Southern Africa by training and mentoring the plant breeders of the future.

The Southern African Plant Breeders’ Association (SAPBA) recently bestowed prestigious awards upon Prof Zakkie Pretorius, Research Fellow in the Department of Plant Sciences at the University of the Free State (UFS), and Prof Liezel Herselman, Associate Professor in the same department. This institution strives to maintain high ethical standards and norms, contributing to stable, sustainable agriculture.

During the 13th Southern African Plant Breeders’ Association symposium, Prof Herselman was presented with a Fellow Award and Prof Pretorius with Honorary Membership. They received the awards for their services to and promotion of the SAPBA objectives, together with their exceptional contributions to plant breeding. 

Provide food for the nation
Over the years, Prof Pretorius, who has extensive expertise in diseases of field crops – more specifically the rust diseases of small grain cereal crops – has played a significant role in providing pathology support to the plant breeding industry. He has also conducted ground-breaking pathology research on rust diseases in field crops. In 2019, he co-authored an article that appeared in Nature, the world’s leading multidisciplinary science journal. He is also shortlisted as a 2020 finalist in the Lifetime Award and Special Theme Award (Plant Health) of the National Science and Technology Forum. Furthermore, he regularly attended and participated in biennial conferences and supervised plant breeding students working on plant disease projects. 

Prof Herselman contributes to plant breeding in Southern Africa by training and mentoring the plant breeders of the future. “As a lecturer of fourth-year and honours Plant Breeding students, as well as supervisor and promoter of master’s and doctoral students, I am in the fortunate position to teach and mentor my students in one of the newest fields of plant breeding, namely marker-assisted plant breeding. All future plant breeders need this knowledge to make a success of their breeding programmes. Our students are the future plant breeders who will provide food to the nation,” she says. 

"As a plant pathologist, I am privileged to have been able to contribute to the quest for disease resistance in crop improvement and to have been recognised for it.” – Prof Zakkie Pretorius
The highest honour
Prof Pretorius view recognition by the industry – in this case, the plant breeding fraternity – as the highest honour for someone working in agricultural science. “As a plant pathologist, I am privileged to have been able to contribute to the quest for disease resistance in crop improvement and to have been recognised for it. I am also extremely grateful to colleagues and co-workers who have contributed over many years to the establishment of a productive and influential research group at the UFS,” he says.

Prof Herselman shares this sentiment. She says: “It means so much to me to know that I have made a difference and an impact on my students’ lives. It is a privilege to have the opportunity to work with under- and postgraduate students and to see them grow.”

She continues: “We strive to send out well-rounded students who can make a difference in the workplace and the community. This award means that I have succeeded in this goal, even though I do my work because I am passionate about it and not to receive recognition.”

Fight against fungal disease continues
Prof Pretorius continues to be involved in studies on host plant resistance and pathogenic variability. 

As a molecular plant breeder, Prof Herselman is pushing on with research focusing on the development of wheat lines with improved disease resistance. The work that she is doing makes a difference on both national and international level. “As part of my current research programme, we have made rust- and Fusarium head blight-resistant wheat lines available to South African breeding companies for use in their breeding programmes. The lines developed at the UFS will in a small way contribute towards the fight against fungal diseases in South Africa, thus securing the yield and livelihoods of farmers and consumers,” she says.

Her master’s and doctoral students who have completed their studies, also take the knowledge they gained at the UFS back to their countries and workplaces where they ultimately add value, especially contributing towards the fight against hunger. 

"“We strive to send out well-rounded students who can make a difference in the workplace and the community. This award means that I have succeeded in this goal, even though I do my work because I am passionate about it and not to receive recognition.” – Prof Liezel Herselman

News Archive

Nanotechnology breakthrough at UFS
2010-08-19

 Ph.D students, Chantel Swart and Ntsoaki Leeuw


Scientists at the University of the Free State (UFS) made an important breakthrough in the use of nanotechnology in medical and biological research. The UFS team’s research has been accepted for publication by the internationally accredited Canadian Journal of Microbiology.

The UFS study dissected yeast cells exposed to over-used cooking oil by peeling microscopically thin layers off the yeast cells through the use of nanotechnology.

The yeast cells were enlarged thousands of times to study what was going on inside the cells, whilst at the same time establishing the chemical elements the cells are composed of. This was done by making microscopically small surgical incisions into the cell walls.

This groundbreaking research opens up a host of new uses for nanotechnology, as it was the first study ever in which biological cells were surgically manipulated and at the same time elemental analysis performed through nanotechnology. According to Prof. Lodewyk Kock, head of the Division Lipid Biotechnology at the UFS, the study has far reaching implications for biological and medical research.

The research was the result of collaboration between the Department of Microbial, Biochemical and Food Biotechnology, the Department of Physics (under the leadership of Prof. Hendrik Swart) and the Centre for Microscopy (under the leadership of Prof.Pieter van Wyk).

Two Ph.D. students, Chantel Swart and Ntsoaki Leeuw, overseen by professors Kock and Van Wyk, managed to successfully prepare yeast that was exposed to over-used cooking oil (used for deep frying of food) for this first ever method of nanotechnological research.

According to Prof. Kock, a single yeast cell is approximately 5 micrometres long. “A micrometre is one millionth of a metre – in laymen’s terms, even less than the diameter of a single hair – and completely invisible to the human eye.”

Through the use of nanotechnology, the chemical composition of the surface of the yeast cells could be established by making a surgical incision into the surface. The cells could be peeled off in layers of approximately three (3) nanometres at a time to establish the effect of the oil on the yeast cell’s composition. A nanometre is one thousandth of a micrometre.

Each cell was enlarged by between 40 000 and 50 000 times. This was done by using the Department of Physics’ PHI700 Scanning Auger Nanoprobe linked to a Scanning Electron Microscope and Argon-etching. Under the guidance of Prof. Swart, Mss. Swart en Leeuw could dissect the surfaces of yeast cells exposed to over-used cooking oil. 

The study noted wart like outgrowths - some only a few nanometres in diameter – on the cell surfaces. Research concluded that these outgrowths were caused by the oil. The exposure to the oil also drastically hampered the growth of the yeast cells. (See figure 1)  

Researchers worldwide have warned about the over-usage of cooking oil for deep frying of food, as it can be linked to the cause of diseases like cancer. The over-usage of cooking oil in the preparation of food is therefore strictly regulated by laws worldwide.

The UFS-research doesn’t only show that over-used cooking oil is harmful to micro-organisms like yeast, but also suggests how nanotechnology can be used in biological and medical research on, amongst others, cancer cells.

 

Figure 1. Yeast cells exposed to over-used cooking oil. Wart like protuberances/ outgrowths (WP) is clearly visible on the surfaces of the elongated yeast cells. With the use of nanotechnology, it is possible to peel off the warts – some with a diameter of only a few nanometres – in layers only a few nanometres thick. At the same time, the 3D-structure of the warts as well as its chemical composition can be established.  

Media Release
Issued by: Mangaliso Radebe
Assistant Director: Media Liaison
Tel: 051 401 2828
Cell: 078 460 3320
E-mail: radebemt@ufs.ac.za  
18 August 2010
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept