Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
10 June 2020 | Story Leonie Bolleurs | Photo Supplied
Prof Zakkie Pretorius, left, plays a significant role in providing pathology support to the plant breeding industry.Prof Liezel Herselman contributes to plant breeding in Southern Africa by training and mentoring the plant breeders of the future.

The Southern African Plant Breeders’ Association (SAPBA) recently bestowed prestigious awards upon Prof Zakkie Pretorius, Research Fellow in the Department of Plant Sciences at the University of the Free State (UFS), and Prof Liezel Herselman, Associate Professor in the same department. This institution strives to maintain high ethical standards and norms, contributing to stable, sustainable agriculture.

During the 13th Southern African Plant Breeders’ Association symposium, Prof Herselman was presented with a Fellow Award and Prof Pretorius with Honorary Membership. They received the awards for their services to and promotion of the SAPBA objectives, together with their exceptional contributions to plant breeding. 

Provide food for the nation
Over the years, Prof Pretorius, who has extensive expertise in diseases of field crops – more specifically the rust diseases of small grain cereal crops – has played a significant role in providing pathology support to the plant breeding industry. He has also conducted ground-breaking pathology research on rust diseases in field crops. In 2019, he co-authored an article that appeared in Nature, the world’s leading multidisciplinary science journal. He is also shortlisted as a 2020 finalist in the Lifetime Award and Special Theme Award (Plant Health) of the National Science and Technology Forum. Furthermore, he regularly attended and participated in biennial conferences and supervised plant breeding students working on plant disease projects. 

Prof Herselman contributes to plant breeding in Southern Africa by training and mentoring the plant breeders of the future. “As a lecturer of fourth-year and honours Plant Breeding students, as well as supervisor and promoter of master’s and doctoral students, I am in the fortunate position to teach and mentor my students in one of the newest fields of plant breeding, namely marker-assisted plant breeding. All future plant breeders need this knowledge to make a success of their breeding programmes. Our students are the future plant breeders who will provide food to the nation,” she says. 

"As a plant pathologist, I am privileged to have been able to contribute to the quest for disease resistance in crop improvement and to have been recognised for it.” – Prof Zakkie Pretorius
The highest honour
Prof Pretorius view recognition by the industry – in this case, the plant breeding fraternity – as the highest honour for someone working in agricultural science. “As a plant pathologist, I am privileged to have been able to contribute to the quest for disease resistance in crop improvement and to have been recognised for it. I am also extremely grateful to colleagues and co-workers who have contributed over many years to the establishment of a productive and influential research group at the UFS,” he says.

Prof Herselman shares this sentiment. She says: “It means so much to me to know that I have made a difference and an impact on my students’ lives. It is a privilege to have the opportunity to work with under- and postgraduate students and to see them grow.”

She continues: “We strive to send out well-rounded students who can make a difference in the workplace and the community. This award means that I have succeeded in this goal, even though I do my work because I am passionate about it and not to receive recognition.”

Fight against fungal disease continues
Prof Pretorius continues to be involved in studies on host plant resistance and pathogenic variability. 

As a molecular plant breeder, Prof Herselman is pushing on with research focusing on the development of wheat lines with improved disease resistance. The work that she is doing makes a difference on both national and international level. “As part of my current research programme, we have made rust- and Fusarium head blight-resistant wheat lines available to South African breeding companies for use in their breeding programmes. The lines developed at the UFS will in a small way contribute towards the fight against fungal diseases in South Africa, thus securing the yield and livelihoods of farmers and consumers,” she says.

Her master’s and doctoral students who have completed their studies, also take the knowledge they gained at the UFS back to their countries and workplaces where they ultimately add value, especially contributing towards the fight against hunger. 

"“We strive to send out well-rounded students who can make a difference in the workplace and the community. This award means that I have succeeded in this goal, even though I do my work because I am passionate about it and not to receive recognition.” – Prof Liezel Herselman

News Archive

UFS boasts with most advanced chemical research apparatus in Africa
2005-11-23

Celebrating the inauguration of the NMR were from the left Prof Frederick Fourie (Rector and Vice-Chancellor of the UFS),  Dr Detlef Müller (Development Scientist and Manager:  Africa and Asia of Bruker in Germany, the supplier of the NMR), Prof Jannie Swarts (head of the head of the Division Physical Chemistry at the UFS) and Prof Herman van Schalkwyk (Dean:  Faculty of Natural and Agricultural Sciences at the UFS). Photo: Lacea Loader

UFS boasts with most advanced chemical research apparatus in Africa 

The University of the Free State’s (UFS) Department of Chemistry now boasts with some of the most advanced chemical research apparatus in Africa after the latest addition, a nuclear magnetic resonance (NMR) spectrometer, was inaugurated today by the Rector and Vice-Chancellor, Prof Frederick Fourie.  The NMR is used to analyse molecular structures. 

Last month the Department of Chemistry celebrated the installation of the most advanced single crystal X-ray diffractometer in Africa.  The diffractometer provides an indispensable technique to investigate among others the solid state of compounds for medicinal application.

“Three years ago the UFS executive management realised that, if we want to build a university of excellence, we should invest in research.  We started to think strategically about chemistry and decided to bring the apparatus at the Department of Chemistry on a more competitive standard.  Strategic partnerships were therefore secured with companies like Sasol,” said Prof Fourie during the inauguration ceremony.

“The installation of the NMR symbolises the ability of the UFS to turn academic areas around.  I hope that this is the beginning of a decade of excellence for chemistry at the UFS,” said Prof Fourie.

”The catalogue value of the Bruker 600 MHz NMR is approximately R11 million.  With such an advanced apparatus we are now able to train much more post-graduate students,“ said Prof Jannie Swarts, head of the Division Physical Chemistry at the UFS.

”The NMR is the flagship apparatus of the UFS Department of Chemistry that enables chemists to look at compounds more easily at a molecular level.  Research in chemistry is critically dependent on NMR, which is a technique that can determine the composition of reactants and products in complicated chemical reactions, with direct application is most focus areas in chemistry,“ said Prof Swarts.

”Parts of the spectrometer consists of non-commercial items that were specifically designed for the UFS Department of Chemistry to allow the study of unique interactions in e.g. rhodium and platinum compounds,” said Prof Swarts.

According to Prof Swarts the NMR enables chemists to conduct investigations on the following:

To evaluate for example the complex behaviour of DNA in proteins as well as the analysis of illegal drugs sometimes used by athletes. 
It provides an indispensable technique to investigate compounds for medicinal application for example in breast, prostate and related bone cancer identification and therapy, which are currently synthesised in the Department of Chemistry.  
It can also be applied to the area of homogeneous catalysis where new and improved compounds for industrial application are synthesized and characterised, whereby Sasol and even the international petrochemical industry could benefit. This analytical capacity is highly rated, especially in the current climate of increased oil prices.
The NMR can detect and identify small concentrations of impurities in feed streams in the petrochemical industry, e.g. at Sasol and also the international petrochemical industry.  These minute amounts of impurities can result in metal catalyst deactivation or decomposition and can cause million of rands worth in product losses.
It is indispensable for studying the complexity of samples that is non-crystalline. These materials represent the vast majority of chemical compounds such as solvents, gasoline, cooking oil, cleaning agents and colorants as examples. 

According to Prof Swarts the general medical technique of MRI (magnetic resonance imaging) in use at larger hospitals, is based on NMR technology.

”The NMR apparatus enabled the Department of Chemistry to characterise complex molecules that were synthesised for the multi-national company, FARMOFS-PAREXEL, and to negotiate research agreements with overseas universities,” said Prof Swarts. 

Media release
Issued by: Lacea Loader
Media Representative
Tel:  (051) 401-2584
Cell:  083 645 2454
E-mail:  loaderl.stg@mail.uovs.ac.za
22 November 2005
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept