Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 March 2020 | Story Thabo Kessah | Photo Thabo Kessah
Japan UFS Afromontane Research Unit research collaboration
Dr Melissa Hansen (left) with ARU guest researchers. They are, from the left: Gema Carlota Cubelos Perez, Emilie Jones, Ven Paolo Valenzuela, Kanako Matsuyama (International Christian University), and Dr Kudo Shogo.

Research ties between the University of the Free State, the University of Tokyo, and the International Christian University strengthened when the Japanese scholars visited the Afromontane Research Unit (ARU) on the Qwaqwa Campus. 

“The visiting delegation is part of the larger research group on sustainability studies that has been sharing research expertise with the Afromontane Research Unit’s researchers over the past three years,” said Dr Kudo Shogo, Assistant Professor from the University of Tokyo’s Graduate Programme in Sustainability Science – Global Leadership Initiative (GPSS-GLI).

Entrepreneurship in Qwaqwa
“Our focus this time is on entrepreneurs who have had exposure to megacities such as Johannesburg and Cape Town, and who are finding themselves back in places like Qwaqwa. We have discovered that they actually find Qwaqwa more resourceful than when they left. Two to three years of unstable living in the cities gave them a fresh view to see the many opportunities in Qwaqwa and they then start their businesses. Talking to the Qwaqwa entrepreneurs has been a great learning experience for all of us,” he added.

The visiting scholars conducted interviews with 10 local entrepreneurs to get a sense of how they use entrepreneurship for sustainability purposes.

“We are pleased by the local people’s understanding that local problems require local solutions. I would really like to contribute to these people’s understanding of how these solutions fit the problems better than solutions that come from outside. We have quite a number of voices talking about empowering Qwaqwa, with the emphasis on creating jobs for Qwaqwa, solving the problems that Qwaqwa is facing. I have found education to be a unifying factor through tutoring, after-school classes, mentorship, and the personal imperative of sharing,” said Emilie Jones, originally from the United States of America and now studying for a master’s degree in Sustainability Science focusing on water supply and resources.

Education and arts empower communities
“Most of the entrepreneurs we spoke to have experience of the big cities. For them, Qwaqwa is very close to the heart and is home. There are challenges, but they are doing their best to empower their community with ideas and skills from the big cities. They provide services such as education and arts to empower the community to come up with a local identity,” said a PhD candidate, Ven Paolo Valenzuela from the Philippines. 

“I was impressed with the people who realise the opportunities to identify problems and even come up with solutions themselves. A lot of communities can learn from this,” said Gema Carlota Cubelos Perez, a PhD candidate originally from Spain.

Their host, Dr Melissa Hansen, Lecturer from the Department of Geography, said the visit was part of the bigger study on migration and sustainable development. “This was a Global Field Exercise (GFE) for teaching research methods in the field. We found that Qwaqwa is overflowing with potential for entrepreneurship in a wide variety of fields and that there is a strong, vibrant network of young individuals brimming with talent. We are learning from each other, as Akita City in Japan and Qwaqwa are similar in more ways than one,” she said.

One of the entrepreneurs, Refiloe Seekane, is a self-taught fashion designer, choreographer, and event coordinator. “The interview has actually made me realise the gaps we have for business opportunities in Qwaqwa and the importance of implementing some of the projects I have been planning for years,” said Seekane, a second-year Education student and CEO of Evomind.


News Archive

UFS physicists publish in prestigious Nature journal
2017-10-16

Description: Boyden Observatory gravitational wave event Tags: Boyden Observatory, gravitational wave event, Dr Brian van Soelen, Hélène Szegedi, multi-wavelength astronomy 
Hélène Szegedi and Dr Brian van Soelen are scientists in the
Department of Physics at the University of the Free State.

Photo: Charl Devenish

In August 2017, the Boyden Observatory in Bloemfontein played a major role in obtaining optical observations of one of the biggest discoveries ever made in astrophysics: the detection of an electromagnetic counterpart to a gravitational wave event.
 
An article reporting on this discovery will appear in the prestigious science journal, Nature, in October 2017. Co-authors of the article, Dr Brian van Soelen and Hélène Szegedi, are from the Department of Physics at the University of the Free State (UFS). Both Dr Van Soelen and Szegedi are researching multi-wavelength astronomy.
 
Discovery is the beginning of a new epoch in astronomy
 
Dr van Soelen said: “These observations and this discovery are the beginning of a new epoch in astronomy. We are now able to not only undertake multi-wavelength observations over the whole electromagnetic spectrum (radio up to gamma-rays) but have now been able to observe the same source in both electromagnetic and gravitational waves.”
 
Until recently it was only possible to observe the universe using light obtained from astronomical sources. This all changed in February 2016 when LIGO (Laser Interferometer Gravitational-Wave Observatory) stated that for the first time they had detected gravitational waves on 14 September 2015 from the merger of two black holes. Since then, LIGO has announced the detection of two more such mergers. A fourth was just reported (27 September 2017), which was the first detected by both LIGO and Virgo. However, despite the huge amount of energy released in these processes, none of this is detectable as radiation in any part of the electromagnetic spectrum. Since the first LIGO detection astronomers have been searching for possible electromagnetic counterparts to gravitational wave detections. 
 
Large international collaboration of astronomers rushed to observe source
 
On 17 August 2017 LIGO and Virgo detected the first ever gravitational waves resulting from the merger of two neutron stars. Neutron star mergers produce massive explosions called kilonovae which will produce a specific electromagnetic signature. After the detection of the gravitational wave, telescopes around the world started searching for the optical counterpart, and it was discovered to be located in an elliptical galaxy, NGC4993, 130 million light years away. A large international collaboration of astronomers, including Dr Van Soelen and Szegedi, rushed to observe this source.
 
At the Boyden Observatory, Dr Van Soelen and Szegedi used the Boyden 1.5-m optical telescope to observe the source in the early evening, from 18 to 21 August. The observations obtained at Boyden Observatory, combined with observations from telescopes in Chile and Hawaii, confirmed that this was the first-ever detection of an electromagnetic counterpart to a gravitational wave event. Combined with the detection of gamma-rays with the Fermi-LAT telescope, this also confirms that neutron star mergers are responsible for short gamma-ray bursts.  
 
The results from these optical observations are reported in A kilonova as the electromagnetic counterpart to a gravitational-wave source published in Nature in October 2017.
 
“Our paper is one of a few that will be submitted by different groups that will report on this discovery, including a large LIGO-Virgo paper summarising all observations. The main results from our paper were obtained through the New Technology Telescope, the GROND system, and the Pan-STARRS system. The Boyden observations helped to obtain extra observations during the first 72 hours which showed that the light of the source decreased much quicker than was expected for supernova, classifying this source as a kilonova,” Dr Van Soelen said.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept