Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 March 2020 | Story Thabo Kessah | Photo Thabo Kessah
Japan UFS Afromontane Research Unit research collaboration
Dr Melissa Hansen (left) with ARU guest researchers. They are, from the left: Gema Carlota Cubelos Perez, Emilie Jones, Ven Paolo Valenzuela, Kanako Matsuyama (International Christian University), and Dr Kudo Shogo.

Research ties between the University of the Free State, the University of Tokyo, and the International Christian University strengthened when the Japanese scholars visited the Afromontane Research Unit (ARU) on the Qwaqwa Campus. 

“The visiting delegation is part of the larger research group on sustainability studies that has been sharing research expertise with the Afromontane Research Unit’s researchers over the past three years,” said Dr Kudo Shogo, Assistant Professor from the University of Tokyo’s Graduate Programme in Sustainability Science – Global Leadership Initiative (GPSS-GLI).

Entrepreneurship in Qwaqwa
“Our focus this time is on entrepreneurs who have had exposure to megacities such as Johannesburg and Cape Town, and who are finding themselves back in places like Qwaqwa. We have discovered that they actually find Qwaqwa more resourceful than when they left. Two to three years of unstable living in the cities gave them a fresh view to see the many opportunities in Qwaqwa and they then start their businesses. Talking to the Qwaqwa entrepreneurs has been a great learning experience for all of us,” he added.

The visiting scholars conducted interviews with 10 local entrepreneurs to get a sense of how they use entrepreneurship for sustainability purposes.

“We are pleased by the local people’s understanding that local problems require local solutions. I would really like to contribute to these people’s understanding of how these solutions fit the problems better than solutions that come from outside. We have quite a number of voices talking about empowering Qwaqwa, with the emphasis on creating jobs for Qwaqwa, solving the problems that Qwaqwa is facing. I have found education to be a unifying factor through tutoring, after-school classes, mentorship, and the personal imperative of sharing,” said Emilie Jones, originally from the United States of America and now studying for a master’s degree in Sustainability Science focusing on water supply and resources.

Education and arts empower communities
“Most of the entrepreneurs we spoke to have experience of the big cities. For them, Qwaqwa is very close to the heart and is home. There are challenges, but they are doing their best to empower their community with ideas and skills from the big cities. They provide services such as education and arts to empower the community to come up with a local identity,” said a PhD candidate, Ven Paolo Valenzuela from the Philippines. 

“I was impressed with the people who realise the opportunities to identify problems and even come up with solutions themselves. A lot of communities can learn from this,” said Gema Carlota Cubelos Perez, a PhD candidate originally from Spain.

Their host, Dr Melissa Hansen, Lecturer from the Department of Geography, said the visit was part of the bigger study on migration and sustainable development. “This was a Global Field Exercise (GFE) for teaching research methods in the field. We found that Qwaqwa is overflowing with potential for entrepreneurship in a wide variety of fields and that there is a strong, vibrant network of young individuals brimming with talent. We are learning from each other, as Akita City in Japan and Qwaqwa are similar in more ways than one,” she said.

One of the entrepreneurs, Refiloe Seekane, is a self-taught fashion designer, choreographer, and event coordinator. “The interview has actually made me realise the gaps we have for business opportunities in Qwaqwa and the importance of implementing some of the projects I have been planning for years,” said Seekane, a second-year Education student and CEO of Evomind.


News Archive

Carbon dioxide makes for more aromatic decaffeinated coffee
2017-10-27


 Description: Carbon dioxide makes for more aromatic decaffeinated coffee 1b Tags: Carbon dioxide makes for more aromatic decaffeinated coffee 1b 

The Inorganic Group in the Department of Chemistry
at the UFS is systematically researching the utilisation
of carbon dioxide. From the left, are, Dr Ebrahiem Botha,
Postdoctoral Fellow; Mahlomolo Khasemene, MSc student;
Prof André Roodt; Dr Marietjie Schutte-Smith, Senior Lecturer;
and Mokete Motente, MSc student.
Photo: Charl Devenish

Several industries in South Africa are currently producing hundreds of thousands of tons of carbon dioxide a year, which are released directly into the air. A typical family sedan doing around 10 000 km per year, is annually releasing more than one ton of carbon dioxide into the atmosphere.

The Inorganic Chemistry Research Group in the Department of Chemistry at the University of the Free State (UFS), in collaboration with the University of Zurich in Switzerland, has focused in recent years on using carbon dioxide – which is regarded as a harmful and global warming gas – in a meaningful way. 

According to Prof André Roodt, Head of Inorganic Chemistry at the UFS, the Department of Chemistry has for the past five decades been researching natural products that could be extracted from plants. These products are manufactured by plants through photosynthesis, in other words the utilisation of sunlight and carbon dioxide, nitrogen, and other nutrients from the soil.

Caffeine and chlorophyll 
“The Inorganic group is systematically researching the utilisation of carbon dioxide. Carbon dioxide is absorbed by plants through chlorophyll and used to make interesting and valuable compounds and sugars, which in turn could be used for the production of important new medicines,” says Prof Roodt.

Caffeine, a major energy enhancer, is also manufactured through photosynthesis in plants. It is commonly found in tea and coffee, but also (artificially added) in energy drinks. Because caffeine is a stimulant of the central nervous system and reduces fatigue and drowsiness, some people prefer decaffeinated coffee when enjoying this hot drink late at night. 

Removing caffeine from coffee could be expensive and time-consuming, but also environmentally unfriendly, because it involves the use of harmful and flammable liquids. Some of the Inorganic Group’s research focus areas include the use of carbon dioxide for the extraction of compounds, such as caffeine from plants. 

“Therefore, the research could lead to the availability of more decaffeinated coffee products. Although decaffeinated coffee is currently aromatic, we want to investigate further to ensure better quality flavours,” says Prof Roodt.

Another research aspect the team is focusing on is the use of carbon dioxide to extract chlorophyll from plants which have medicinal properties themselves. Chemical suppliers sell chlorophyll at R3 000 a gram. “In the process of investigating chlorophyll, our group discovered simpler techniques to comfortably extract larger quantities from green vegetables and other plants,” says Prof Roodt.

Medicines
In addition, the Inorganic Research Group is also looking to use carbon dioxide as a building block for more valuable compounds. Some of these compounds will be used in the Inorganic Group’s research focus on radiopharmaceutical products for the identification and possibly even the treatment of diseases such as certain cancers, tuberculosis, and malaria.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept