Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 March 2020 | Story Thabo Kessah | Photo Thabo Kessah
Japan UFS Afromontane Research Unit research collaboration
Dr Melissa Hansen (left) with ARU guest researchers. They are, from the left: Gema Carlota Cubelos Perez, Emilie Jones, Ven Paolo Valenzuela, Kanako Matsuyama (International Christian University), and Dr Kudo Shogo.

Research ties between the University of the Free State, the University of Tokyo, and the International Christian University strengthened when the Japanese scholars visited the Afromontane Research Unit (ARU) on the Qwaqwa Campus. 

“The visiting delegation is part of the larger research group on sustainability studies that has been sharing research expertise with the Afromontane Research Unit’s researchers over the past three years,” said Dr Kudo Shogo, Assistant Professor from the University of Tokyo’s Graduate Programme in Sustainability Science – Global Leadership Initiative (GPSS-GLI).

Entrepreneurship in Qwaqwa
“Our focus this time is on entrepreneurs who have had exposure to megacities such as Johannesburg and Cape Town, and who are finding themselves back in places like Qwaqwa. We have discovered that they actually find Qwaqwa more resourceful than when they left. Two to three years of unstable living in the cities gave them a fresh view to see the many opportunities in Qwaqwa and they then start their businesses. Talking to the Qwaqwa entrepreneurs has been a great learning experience for all of us,” he added.

The visiting scholars conducted interviews with 10 local entrepreneurs to get a sense of how they use entrepreneurship for sustainability purposes.

“We are pleased by the local people’s understanding that local problems require local solutions. I would really like to contribute to these people’s understanding of how these solutions fit the problems better than solutions that come from outside. We have quite a number of voices talking about empowering Qwaqwa, with the emphasis on creating jobs for Qwaqwa, solving the problems that Qwaqwa is facing. I have found education to be a unifying factor through tutoring, after-school classes, mentorship, and the personal imperative of sharing,” said Emilie Jones, originally from the United States of America and now studying for a master’s degree in Sustainability Science focusing on water supply and resources.

Education and arts empower communities
“Most of the entrepreneurs we spoke to have experience of the big cities. For them, Qwaqwa is very close to the heart and is home. There are challenges, but they are doing their best to empower their community with ideas and skills from the big cities. They provide services such as education and arts to empower the community to come up with a local identity,” said a PhD candidate, Ven Paolo Valenzuela from the Philippines. 

“I was impressed with the people who realise the opportunities to identify problems and even come up with solutions themselves. A lot of communities can learn from this,” said Gema Carlota Cubelos Perez, a PhD candidate originally from Spain.

Their host, Dr Melissa Hansen, Lecturer from the Department of Geography, said the visit was part of the bigger study on migration and sustainable development. “This was a Global Field Exercise (GFE) for teaching research methods in the field. We found that Qwaqwa is overflowing with potential for entrepreneurship in a wide variety of fields and that there is a strong, vibrant network of young individuals brimming with talent. We are learning from each other, as Akita City in Japan and Qwaqwa are similar in more ways than one,” she said.

One of the entrepreneurs, Refiloe Seekane, is a self-taught fashion designer, choreographer, and event coordinator. “The interview has actually made me realise the gaps we have for business opportunities in Qwaqwa and the importance of implementing some of the projects I have been planning for years,” said Seekane, a second-year Education student and CEO of Evomind.


News Archive

Inaugural lecture: Prof Robert Bragg, Dept. of Microbial, Biochemical and Food Biotechnology
2006-05-17



Attending the inaugural lecture were in front from the left Prof Robert Bragg (lecturer at the Department of Microbial, Biochemical and Food Biotechnology) and Frederick Fourie (Rector and Vice-Chancellor).  At the back from the left were Prof James du Preez (Departmental Chairperson:  Department of Microbial, Biochemical and Food Biotechnology) and Prof Herman van Schalkwyk (Dean: Faculty of Natural and Agricultural Sciences). Photo: Stephen Collett
 

A summary of an inaugural lecture delivered by Prof Robert Bragg at the University of the Free State:

CONTROL OF INFECTIOUS AVIAN DISEASES – LESSONS FOR MAN?

Prof Robert R Bragg
Department of Microbial, Biochemical and Food Biotechnology
University of the Free State

“Many of the lessons learnt in disease control in poultry will have application on human medicine,” said Prof Robert Bragg, lecturer at the University of the Free State’s (UFS) Department of Microbial, Biochemical and Food Biotechnology during his inaugural lecture.

Prof Bragg said the development of vaccines remains the main stay of disease control in humans as well as in avian species.  Disease control can not rely on vaccination alone and other disease-control options must be examined.  

“With the increasing problems of antibiotic resistance, the use of disinfection and bio security are becoming more important,” he said.

“Avian influenza (AI) is an example of a disease which can spread from birds to humans.  Hopefully this virus will not develop human to human transmission,” said Prof Bragg.

According to Prof Bragg, South Africa is not on the migration route of water birds, which are the main transmitters of AI.  “This makes South Africa one of the countries less likely to get the disease,” he said.

If the AI virus does develop human to human transmission, it could make the 1918 flu pandemic pale into insignificance.  During the 1918 flu pandemic, the virus had a mortality rate of only 3%, yet more than 50 million people died.

Although the AI virus has not developed human-to-human transmission, all human cases have been related to direct contact with infected birds. The mortality rate in humans who have contracted this virus is 67%.

“Apart from the obvious fears for the human population, this virus is a very serious poultry pathogen and can cause 100% mortality in poultry populations.  Poultry meat and egg production is the staple protein source in most countries around the world. The virus is currently devastating the poultry industry world-wide,” said Prof Bragg.

Prof Bragg’s research activities on avian diseases started off with the investigation of diseases in poultry.  “The average life cycle of a broiler chicken is 42 days.  After this short time, they are slaughtered.  As a result of the short generation time in poultry, one can observe changes in microbial populations as a result of the use of vaccines, antibiotics and disinfectants,” said Prof Bragg.   

“Much of my research effort has been directed towards the control of infectious coryza in layers, which is caused by the bacterium Avibacterium paragallinarum.  This disease is a type of sinusitis in the layer chickens and can cause a drop in egg product of up to 40%,” said Prof Bragg.

The vaccines used around the world in an attempt to control this disease are all inactivated vaccines. One of the most important points is the selection of the correct strains of the bacterium to use in the vaccine.

Prof Bragg established that in South Africa, there are four different serovars of the bacterium and one of these, the serovar C-3 strain, was believed to be unique to Southern Africa. He also recently discovered this serovar for the first time in Israel, thus indicating that this serovar might have a wider distribution than originally believed.

Vaccines used in this country did not contain this serovar.  Prof Bragg established that the long term use of vaccines not containing the local South African strain resulted in a shift in the population distribution of the pathogen.

Prof Bragg’s research activities also include disease control in parrots and pigeons.   “One of the main research projects in my group is on the disease in parrots caused by the circovirus Beak and Feather Disease virus. This virus causes serious problems in the parrot breeding industry in this country. This virus is also threatening the highly endangered and endemic Cape Parrot,” said Prof Bragg.

Prof Bragg’s research group is currently working on the development of a DNA vaccine which will assist in the control of the disease, not only in the parrot breeding industry, but also to help the highly endangered Cape Parrot in its battle for survival.

“Not all of our research efforts are directed towards infectious coryza or the Beak and Feather Disease virus.  One of my Masters students is currently investigating the cell receptors involved in the binding of Newcastle Disease virus to cancerous cells and normal cells of humans. This work will also eventually lead to a possible treatment of cancer in humans and will assist with the development of a recombinant vaccine for Newcastle disease virus,” said Prof Bragg.

We are also currently investigating an “unknown” virus which causes disease problems in poultry in the Western Cape,” said Prof Bragg.
 
“Although disinfection has been extensively used in the poultry industry, it has only been done at the pre-placement stage. In other words, disinfectants are used before the birds are placed into the house. Once the birds are placed, all use of disinfectants stops,” said Prof Bragg.

“Disinfection and bio security can be seen as the ‘Cinderella’ of disease control in poultry.  This is also true for human medicine. One just has to look at the high numbers of people who die from hospital-acquired infections to realise that disinfection is not a concept which is really clear in human health care,” said Prof Bragg.

Much research has been done in the control of diseases through vaccination and through the use of antibiotics. “These pillars of disease control are, however, starting to crumble and more effort is needed on disinfection and bio security,” said Prof Bragg.

Prof Bragg has been working in close co-operation with a chemical manufacturing company in Stellenbosch to develop a unique disinfectant which his highly effective yet not toxic to the birds.

As a result of this unique product, he has developed the continual disinfection program for use in poultry. In this program the disinfectant is used throughout the production cycle of the birds. It is also used to ensure that there is excellent pre-placement disinfection.

“The program is extensively used for the control of infectious diseases in the parrot-breeding industry in South Africa and the product has been registered in 15 countries around the world with registration in the USA in the final process,” said Prof Bragg.

“Although the problem of plasmid mediated resistance to disinfectants is starting to rear its ugly head, this has allowed for the opening of a new research field which my group will hopefully exploit in the near future,” he said.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept